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Preface
Python is a programming language renowned for its simplicity, elegance, and  
the support of an outstanding community. Thanks to the impressive amount  
of high-quality third-party libraries, Python is used in many domains.

Low-level languages such as C, C++, and Fortran are usually preferred in 
performance-critical applications. Programs written in those languages  
perform extremely well, but are hard to write and maintain.

Python is an easier language to deal with and it can be used to quickly write  
complex applications. Thanks to its tight integration with C, Python is able to  
avoid the performance drop associated with dynamic languages. You can use  
blazing fast C extensions for performance-critical code and retain all the  
convenience of Python for the rest of your application.

In this book, you will learn, in a step-by-step method how to find and speedup  
the slow parts of your programs using basic and advanced techniques.

The style of the book is practical; every concept is explained and illustrated with 
examples. This book also addresses common mistakes and teaches how to avoid 
them. The tools used in this book are quite popular and battle-tested; you can be  
sure that they will stay relevant and well-supported in the future.

This book starts from the basics and builds on them, therefore, I suggest you  
to move through the chapters in order.

And don't forget to have fun!
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What this book covers
Chapter 1, Benchmarking and Profiling shows you how to find the parts of your  
program that need optimization. We will use tools for different use cases and  
explain how to analyze and interpret profiling statistics.

Chapter 2, Fast Array Operations with NumPy is a guide to the NumPy package. 
NumPy is a framework for array calculations in Python. It comes with a clean  
and concise API, and efficient array operations.

Chapter 3, C Performance with Cython is a tutorial on Cython: a language that acts  
as a bridge between Python and C. Cython can be used to write code using a 
superset of the Python syntax and to compile it to obtain efficient C extensions.

Chapter 4, Parallel Processing is an introduction to parallel programming. In 
this chapter, you will learn how parallel programming is different from serial 
programming and how to parallelize simple problems. We will also explain  
how to use multiprocessing, IPython.parallel and cython.parallel to  
write code for multiple cores.

What you need for this book
This book requires a Python installation. The examples work for both Python 2.7  
and Python 3.3 unless indicated otherwise.

In this book, we will make use of some popular Python packages:

•	 NumPy (Version 1.7.1 or later): This package is downloadable from the 
official website (http://www.scipy.org/scipylib/download.html)  
and available in most of the Linux distributions

•	 Cython (Version 0.19.1 or later): Installation instructions are present in the 
official website (http://docs.cython.org/src/quickstart/install.
html); notice that you also need a C compiler, such as GCC (GNU Compiler 
Collection), to compile your C extensions

•	 IPython (Version 0.13.2 or later): Installation instructions are present in the 
official website (http://ipython.org/install.html)

The book was written and tested on Ubuntu 13.10. The examples will likely run on 
Mac OS X with little or no changes.

My suggestion for Windows users is to install the Anaconda Python distribution 
(https://store.continuum.io/cshop/anaconda/), which comes with a complete 
environment suitable for scientific programming.
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A convenient alternative is to use the free service wakari.io: a cloud-based Linux 
and Python environment that includes the required packages with their tools and 
utilities. No setup is required.

In Chapter 1, Benchmarking and Profiling, we will use KCachegrind (http://
sourceforge.net/projects/kcachegrind/), which is available for Linux. 
KCachegrind has also a port for Windows—QcacheGrind—which is also installable  
from source on Mac OS X.

Who this book is for
This book is for intermediate to advanced Python programmers who develop 
performance-critical applications. As most of the examples are taken from scientific 
applications, the book is a perfect match for scientists and engineers looking to  
speed up their numerical codes.

However, the scope of this book is broad and the concepts can be applied to any 
domain. Since the book addresses both basic and advanced topics, it contains  
useful information for programmers with different Python proficiency levels.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"The plot function included in matplotlib can display our particles as points  
on a Cartesian grid and the FuncAnimation class can animate the evolution of  
our particles over time."

A block of code is set as follows:

from matplotlib import pyplot as plt
from matplotlib import animation

def visualize(simulator):

    X = [p.x for p in simulator.particles]
    Y = [p.y for p in simulator.particles]
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When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

In [1]: import purepy
In [2]: %timeit purepy.loop()
100 loops, best of 3: 8.26 ms per loop
In [3]: %timeit purepy.comprehension()
100 loops, best of 3: 5.39 ms per loop
In [4]: %timeit purepy.generator()
100 loops, best of 3: 5.07 ms per loop

Any command-line input or output is written as follows:

$ time python simul.py # Performance Tuned

real    0m0.756s

user    0m0.714s

sys    0m0.036s

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes, for example, appear in the text like this: "You 
can navigate to the Call Graph or the Caller Map tabs by double-clicking on the 
rectangles."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Benchmarking and Profiling
Recognizing the slow parts of your program is the single most important task when it 
comes to speeding up your code. In most cases, the bottlenecks account for a very small 
fraction of the program. By specifically addressing those critical spots you can focus on 
the parts that need improvement without wasting time in micro-optimizations.

Profiling is the technique that allows us to pinpoint the bottlenecks. A profiler  
is a program that runs the code and observes how long each function takes to  
run, detecting the slow parts of the program. Python provides several tools to  
help us find those bottlenecks and navigate the performance metrics. In this  
chapter, we will learn how to use the standard cProfile module, line_profiler 
and memory_profiler. We will also learn how to interpret the profiling results  
using the program KCachegrind.

You may also want to assess the total execution time of your program and see how 
it is affected by your changes. We will learn how to write benchmarks and how to 
accurately time your programs.

Designing your application
When you are designing a performance-intensive program, the very first step is to 
write your code without having optimization in mind; quoting Donald Knuth:

Premature optimization is the root of all evil.

In the early development stages, the design of the program can change quickly, 
requiring you to rewrite and reorganize big chunks of code. By testing different 
prototypes without bothering about optimizations, you learn more about your 
program, and this will help you make better design decisions.
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The mantras that you should remember when optimizing your code, are as follows:

•	 Make it run: We have to get the software in a working state, and be sure that 
it produces the correct results. This phase serves to explore the problem that 
we are trying to solve and to spot major design issues in the early stages.

•	 Make it right: We want to make sure that the design of the program is solid. 
Refactoring should be done before attempting any performance optimization. 
This really helps separate the application into independent and cohesive 
units that are easier to maintain.

•	 Make it fast: Once our program is working and has a good design we want 
to optimize the parts of the program that are not fast enough. We may also 
want to optimize memory usage if that constitutes an issue.

In this section we will profile a test application—a particle simulator. The simulator 
is a program that takes some particles and evolves them over time according to a 
set of laws that we will establish. Those particles can either be abstract entities or 
correspond to physical objects. They can be, for example, billiard balls moving on 
a table, molecules in gas, stars moving through space, smoke particles, fluids in a 
chamber, and so on.

Those simulations are useful in fields such as Physics, Chemistry, and Astronomy, 
and the programs used to simulate physical systems are typically performance-
intensive. In order to study realistic systems it's often necessary to simulate the 
highest possible number of bodies.

In our first example, we will simulate a system containing particles that constantly 
rotate around a central point at various speeds, like the hands of a clock.

The necessary information to run our simulation will be the starting positions of  
the particles, the speed, and the rotation direction. From these elements, we have  
to calculate the position of the particle in the next instant of time.
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(vx, vy)

(x, y)

(0, 0)

The basic feature of a circular motion is that the particles always move 
perpendicularly to the direction connecting the particle and the center, as shown in 
the preceding image. To move the particle we simply change the position by taking a 
series of very small steps in the direction of motion, as shown in the following figure:
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We will start by designing the application in an object-oriented way. According to 
our requirements, it is natural to have a generic Particle class that simply stores  
the particle position (x, y) and its angular speed:

class Particle:
    def __init__(self, x, y, ang_speed):
        self.x = x
        self.y = y
        self.ang_speed = ang_speed

Another class, called ParticleSimulator will encapsulate our laws of motion and 
will be responsible for changing the positions of the particles over time. The __
init__ method will store a list of Particle instances and the evolve method will 
change the particle positions according to our laws.

We want the particles to rotate around the point (x, y), which, here, is equal to (0, 0), 
at constant speed. The direction of the particles will always be perpendicular to the 
direction from the center (refer to the first figure of this chapter). To find this vector 

v= v ,v( )
x y

 (corresponding to the Python variables v_x and v_y) it is sufficient to use these 
formulae:

v =-y
x

/ x +y
2 2

v =x
y

/ x +y
2 2

If we let one of our particles move, after a certain time dt, it will follow a circular path, 
reaching another position. To let the particle follow that trajectory we have to divide 
the time interval dt into very small time steps where the particle moves tangentially 
to the circle. The final result, is just an approximation of a circular motion and, in fact, 
it's similar to a polygon. The time steps should be very small, otherwise the particle 
trajectory will diverge quickly, as shown in the following figure:
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In a more schematic way, to calculate the particle position at time dt we have to carry 
out the following steps:

1.	 Calculate the direction of motion: v_x, v_y.
2.	 Calculate the displacement (d_x, d_y) which is the product of time and speed 

and follows the direction of motion.
3.	 Repeat steps 1 and 2 for enough time steps to cover the total time dt.

The following code shows the full ParticleSimulator implementation:

class ParticleSimulator:

    def __init__(self, particles):
        self.particles = particles

    def evolve(self, dt):
        timestep = 0.00001
        nsteps = int(dt/timestep)

        for i in range(nsteps):
            for p in self.particles:

                 # 1. calculate the direction
                norm = (p.x**2 + p.y**2)**0.5
                v_x = (-p.y)/norm
                v_y = p.x/norm

                # 2. calculate the displacement
                d_x = timestep * p.ang_speed * v_x
                d_y = timestep * p.ang_speed * v_y

                p.x += d_x
                p.y += d_y
                  # 3. repeat for all the time steps
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We can use the matplotlib library to visualize our particles. This library is not 
included in the Python standard library. To install it, you can follow the instructions 
included in the official documentation at:

http://matplotlib.org/users/installing.html

Alternatively, you can use the Anaconda Python distribution 
(https://store.continuum.io/cshop/anaconda/) 
that includes matplotlib and most of the other third-party 
packages used in this book. Anaconda is free and available for 
Linux, Windows, and Mac.

The plot function included in matplotlib can display our particles as points on 
a Cartesian grid and the FuncAnimation class can animate the evolution of our 
particles over time.

The visualize function accomplishes this by taking the particle simulator and 
displaying the trajectory in an animated plot.

The visualize function is structured as follows:

•	 Setup the axes and display the particles as points using the plot function
•	 Write an initialization function (init) and an update function  

(animate) that changes the x, y coordinates of the data points using the 
line.set_data method

•	 Create a FuncAnimation instance passing the functions and some parameters
•	 Run the animation with plt.show()

The complete implementation of the visualize function is as follows:
from matplotlib import pyplot as plt
from matplotlib import animation

def visualize(simulator):

    X = [p.x for p in simulator.particles]
    Y = [p.y for p in simulator.particles]

    fig = plt.figure()
    ax = plt.subplot(111, aspect='equal')
    line, = ax.plot(X, Y, 'ro')

    # Axis limits
    plt.xlim(-1, 1)
    plt.ylim(-1, 1)
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    # It will be run when the animation starts
    def init():
        line.set_data([], [])
        return line,

    def animate(i):
        # We let the particle evolve for 0.1 time units
        simulator.evolve(0.01)
        X = [p.x for p in simulator.particles]
        Y = [p.y for p in simulator.particles]

        line.set_data(X, Y)
        return line,

    # Call the animate function each 10 ms
    anim = animation.FuncAnimation(fig, animate,  
      init_func=init, blit=True,# Efficient animation
                                   interval=10)
    plt.show()

Finally, we define a small test function—test_visualize—that animates a 
system of three particles rotating in different directions. Note that the third particle 
completes a round three times faster than the others:

def test_visualize():
    particles = [Particle( 0.3,  0.5, +1),
                 Particle( 0.0, -0.5, -1),
                 Particle(-0.1, -0.4, +3)]
 
    simulator = ParticleSimulator(particles)
    visualize(simulator)

if __name__ == '__main__':
    test_visualize()

Writing tests and benchmarks
Now that we have a working simulator, we can start measuring our performance 
and tuning-up our code, so that our simulator can handle as many particles  
as possible. The first step in this process is to write a test and a benchmark.

We need a test that checks whether the results produced by the simulation are 
correct or not. In the optimization process we will rewrite the code to try different 
solutions; by doing so we may easily introduce bugs. Maintaining a solid test suite  
is essential to avoid wasting time on broken code.
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Our test will take three particle and let the system evolve for 0.1 time units. We 
then compare our results, up to a certain precision, with those from a reference 
implementation:

def test():
    particles = [Particle( 0.3,  0.5, +1),
                 Particle( 0.0, -0.5, -1),
                 Particle(-0.1, -0.4, +3)]

    simulator = ParticleSimulator(particles)

    simulator.evolve(0.1)

    p0, p1, p2 = particles

    def fequal(a, b):
        return abs(a - b) < 1e-5

    assert fequal(p0.x, 0.2102698450356825)
    assert fequal(p0.y, 0.5438635787296997)

    assert fequal(p1.x, -0.0993347660567358)
    assert fequal(p1.y, -0.4900342888538049)

    assert fequal(p2.x,  0.1913585038252641)
    assert fequal(p2.y, -0.3652272210744360)

if __name__ == '__main__':
    test()

We also want to write a benchmark that can measure the performance of our 
application. This will provide an indication of how much we have improved  
over the previous implementation.

In our benchmark we instantiate 100 Particle objects with random coordinates  
and angular velocity, and feed them to a ParticleSimulator class. We then let  
the system evolve for 0.1 time units:

from random import uniform

def benchmark():
    particles = [Particle(uniform(-1.0, 1.0),
                          uniform(-1.0, 1.0),
                          uniform(-1.0, 1.0))
                  for i in range(1000)]
    
    simulator = ParticleSimulator(particles)
    simulator.evolve(0.1)

if __name__ == '__main__':
    benchmark()
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Timing your benchmark
You can easily measure the execution time of any process from the command line by 
using the Unix time command:

$ time python simul.py

real    0m1.051s

user    0m1.022s

sys    0m0.028s

The time command is not available for Windows, but can be found 
in the cygwin shell that you can download from the official website 
http://www.cygwin.com/.

By default, time shows three metrics:

•	 real: The actual time spent in running the process from start to finish, as if it 
was measured by a human with a stopwatch

•	 user: The cumulative time spent by all the CPUs during the computation
•	 sys: The cumulative time spent by all the CPUs during system-related tasks 

such as memory allocation

Notice that sometimes user + sys might be greater than real, as multiple processors 
may work in parallel.

time also offers several formatting options; for an overview you can 
explore its manual (by using the man time command). If you want a 
summary of all the metrics available, you can use the -v option.

The Unix time command is a good way to benchmark your program. To achieve  
a more accurate measurement, the benchmark should run long enough (in the  
order of seconds) so that the setup and tear-down of the process become small, 
compared to the execution time. The user metric is suitable as a monitor for the  
CPU performance, as the real metric includes also the time spent in other  
processes or waiting for I/O operations.

Another useful program to time Python scripts is the timeit module. This module 
runs a snippet of code in a loop for n times and measures the time taken. Then, it 
repeats this operation r times (by default the value of r is 3) and takes the best of 
those runs. Because of this procedure, timeit is suitable to accurately time small 
statements in isolation.



Benchmarking and Profiling

[ 16 ]

The timeit module can be used as a Python module, from the command line, or 
from IPython.

IPython is a Python shell designed for interactive usage. It boosts tab completion and 
many utilities to time, profile, and debug your code. We will make use of this shell to 
try out snippets throughout the book. The IPython shell accepts magic commands—
statements that start with a % symbol—that enhance the shell with special behaviors. 
Commands that start with %% are called cell magics, and these commands can be 
applied on multi-line snippets (called cells).

IPython is available on most Linux distributions and is included in Anaconda.  
You can follow the installation instructions in the official documentation at:

http://ipython.org/install.html

You can use IPython as a regular Python shell (ipython) but it is 
also available in a Qt-based version (ipython qtconsole) and 
as a powerful browser-based interface (ipython notebook). 

In IPython and command line interfaces it is possible to specify the number of 
loops or repetitions with the options -n and -r, otherwise they will be determined 
automatically. When invoking timeit from the command line, you can also give a 
setup code that will run before executing the statement in a loop.

In the following code we show how to use timeit from IPython, from the command 
line and as a Python module:

# IPython Interface
$ ipython
In [1]: from simul import benchmark
In [2]: %timeit benchmark()
1 loops, best of 3: 782 ms per loop

# Command Line Interface
$ python -m timeit -s 'from simul import benchmark' 'benchmark()' 
10 loops, best of 3: 826 msec per loop

# Python Interface
# put this function into the simul.py script

import timeit
result = timeit.timeit('benchmark()',
                                   setup='from __main__ import  
                                       benchmark', number=10)
# result is the time (in seconds) to run the whole loop
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result = timeit.repeat('benchmark()', setup='from __main__ import  
    benchmark', number=10, repeat=3)
# result is a list containing the time of each repetition  
    (repeat=3 in this case)

Notice that while the command line and IPython interfaces are automatically 
determining a reasonable value for n, the Python interface requires you to explicitly 
pass it as the number argument.

Finding bottlenecks with cProfile
After assessing the execution time of the program we are ready to identify the parts 
of the code that need performance tuning. Those parts are typically quite small, 
compared to the size of the program.

Historically, there are three different profiling modules in Python's standard library:

•	 The profile module: This module is written in pure Python and adds a 
significant overhead to the program execution. Its presence in the standard 
library is due mainly to its extendibility.

•	 The hotshot module: A C module designed to minimize the profiling 
overhead. Its use is not recommended by the Python community and it is not 
available in Python 3.

•	 The cProfile module: The main profiling module, with an interface similar 
to profile. It has a small overhead and it is suitable as a general purpose 
profiler.

We will see how to use the cProfile module in two different ways:

•	 From the command line
•	 From IPython

In order to use cProfile, no change in the code is required, it can be executed 
directly on an existing Python script or function.
You can use cProfile from the command line in this way:
$ python -m cProfile simul.py

This will print a long output containing several profiling metrics. You can use the 
option -s to sort the output by a certain metric:
$ python -m cProfile -s tottime simul.py

You can save an output file in a format readable by the stats module and other tools 
by passing the -o option:
$ python -m cProfile -o prof.out simul.py
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You can also profile interactively from IPython. The %prun magic command lets you 
profile a function using cProfile:

In [1]: from simul import benchmark
In [2]: %prun benchmark()
         707 function calls in 0.793 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall 
filename:lineno(function)
        1    0.792    0.792    0.792    0.792 simul.py:12(evolve)
        1    0.000    0.000    0.000    0.000  
            simul.py:100(<listcomp>)
      300    0.000    0.000    0.000    0.000  
          random.py:331(uniform)
      100    0.000    0.000    0.000    0.000 simul.py:2(__init__)
        1    0.000    0.000    0.793    0.793 {built-in method  
            exec}
      300    0.000    0.000    0.000    0.000 {method 'random' of  
          '_random.Random' objects}
        1    0.000    0.000    0.793    0.793  
            simul.py:99(benchmark)
        1    0.000    0.000    0.793    0.793 <string>:1(<module>)
        1    0.000    0.000    0.000    0.000 simul.py:9(__init__)
        1    0.000    0.000    0.000    0.000 {method 'disable' of  
'_lsprof.Profiler' objects}

The cProfile output is divided into five columns:

•	 ncalls: The number of times the function was called.
•	 tottime: The total time spent in the function without taking into account the 

calls to other functions.
•	 cumtime: The time spent in the function including other function calls.
•	 percall: The time spent for a single call of the function—it can be obtained 

by dividing the total or cumulative time by the number of calls.
•	 filename:lineno: The filename and corresponding line number. This 

information is not present when calling C extensions modules.

The most important metric is tottime, the actual time spent in the function body 
excluding sub-calls. In our case, the largest portion of time is spent in the evolve 
function. We can imagine that the loop is the section of the code that needs 
performance tuning.
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Analyzing data in a textual way can be daunting for big programs with a lot of calls 
and sub-calls. Some graphic tools aid the task by improving the navigation with an 
interactive interface.

KCachegrind is a GUI (Graphical User Interface) useful to analyze the profiling 
output of different programs.

KCachegrind is available in Ubuntu 13.10 official repositories. The Qt 
port, QCacheGrind can be downloaded for Windows from the following 
web page:
http://sourceforge.net/projects/qcachegrindwin/

Mac users can compile QCacheGrind using Mac Ports (http://www.
macports.org/) by following the instructions present in the blog post 
at this link:
http://blogs.perl.org/users/rurban/2013/04/install-
kachegrind-on-macosx-with-ports.html

KCachegrind can't read directly the output files produced by cProfile. 
Luckily, the pyprof2calltree third-party Python module is able to 
convert the cProfile output file into a format readable by KCachegrind.
You can install pyprof2calltree from source (https://pypi.
python.org/pypi/pyprof2calltree/) or from the Python Package 
Index (https://pypi.python.org/).

To best show the KCachegrind features we will use another example with a more 
diversified structure. We define a recursive function factorial, and two other 
functions that use factorial, and they are taylor_exp and taylor_sin. They 
represent the polynomial coefficients of the Taylor approximations of exp(x) and 
sin(x):

def factorial(n):
    if n == 0:
        return 1.0
    else:
        return float(n) * factorial(n-1)

def taylor_exp(n):
    return [1.0/factorial(i) for i in range(n)]

def taylor_sin(n):
    res = []
    for i in range(n):
        if i % 2 == 1:
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           res.append((-1)**((i-1)/2)/float(factorial(i)))
        else:
           res.append(0.0)
    return res

def benchmark():
    taylor_exp(500)
    taylor_sin(500)

if __name__ == '__main__':
    benchmark()

We need to first generate the cProfile output file:

$ python -m cProfile -o prof.out taylor.py

Then, we can convert the output file with pyprof2calltree and launch 
KCachegrind:

$ pyprof2calltree -i prof.out -o prof.calltree

$ kcachegrind prof.calltree # or qcachegrind prof.calltree
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The preceding image is a screenshot of the KCachegrind user interface. On the left 
we have an output fairly similar to cProfile. The actual column names are slightly 
different: Incl. translates to cProfile module's cumtime; Self translates to tottime. 
The values are given in percentages by clicking on the Relative button on the menu 
bar. By clicking on the column headers you can sort by the corresponding property.

On the top right, a click on the Callee Map tab contains a diagram of the function 
costs. In the diagram, each function is represented by a rectangle and the time 
percentage spent by the function is proportional to the area of the rectangle. 
Rectangles can contain sub-rectangles that represent sub-calls to other functions. In 
this case, we can easily see that there are two rectangles for the factorial function. 
The one on the left corresponds to the calls made by taylor_exp and the one on the 
right to the calls made by taylor_sin.

On the bottom right, you can display another diagram—the call graph—by clicking 
on the Call Graph tab. A call graph is a graphical representation of the calling 
relationship between the functions: each square represents a function and the 
arrows imply a calling relationship. For example, taylor_exp calls <listcomp> (a 
list comprehension) which calls factorial 500 times taylor_sin calls factorial 250 
times. KCachegrind also detects recursive calls: factorial calls itself 187250 times.

You can navigate to the Call Graph or the Caller Map tabs by double-clicking on the 
rectangles; the interface will update accordingly showing that the timing properties 
are relative to the selected function. For example, double-clicking on taylor_exp 
will cause the graph to change, showing only the taylor_exp contribution to the 
total cost.

Gprof2Dot (https://code.google.com/p/jrfonseca/wiki/
Gprof2Dot) is another popular tool used to produce call graphs. Starting 
from output files produced by one of the supported profilers, it will 
generate a .dot diagram representing the call graph.

Profile line by line with line_profiler
Now that we know which function we have to optimize, we can use the line_
profiler module that shows us how time is spent in a line-by-line fashion. This is 
very useful in situations where it's difficult to determine which statements are costly. 
The line_profiler module is a third-party module that is available on the Python 
Package Index and can be installed by following the instructions on its website:

http://pythonhosted.org/line_profiler/
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In order to use line_profiler, we need to apply a @profile decorator to the 
functions we intend to monitor. Notice that you don't have to import the profile 
function from another module, as it gets injected in the global namespace when 
running the profiling script kernprof.py. To produce profiling output for our 
program we need to add the @profile decorator to the evolve function:

@profile
def evolve:
    # code

The script kernprof.py will produce an output file and will print on standard 
output the result of the profiling. We should run the script with two options:

•	 -l to use the line_profiler function
•	 -v to immediately print the results on screen

$ kernprof.py -l -v simul.py

It is also possible to run the profiler in an IPython shell for interactive editing. You 
should first load the line_profiler extension that will provide the magic command 
lprun. By using that command you can avoid adding the @profile decorator.

In [1]: %load_ext line_profiler
In [2]: from simul import benchmark, ParticleSimulator
In [3]: %lprun -f ParticleSimulator.evolve benchmark()
 
Timer unit: 1e-06 s

File: simul.py
Function: evolve at line 12
Total time: 5.31684 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
    12                                               def  
evolve(self, dt):
    13         1            9      9.0      0.0          timestep  
= 0.00001
    14         1            4      4.0      0.0          nsteps =  
int(dt/timestep)
    15                                                   
    16     10001         5837      0.6      0.1          for i in  
range(nsteps):
    17   1010000       517504      0.5      9.7              for p 
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in self.particles:
    18                                           
    19   1000000       963498      1.0     18.1                   
norm = (p.x**2 + p.y**2)**0.5
    20   1000000       621063      0.6     11.7                   
v_x = (-p.y)/norm
    21   1000000       577882      0.6     10.9                   
v_y = p.x/norm
    22                                                           
    23   1000000       672811      0.7     12.7                   
d_x = timestep * p.ang_speed * v_x
    24   1000000       685092      0.7     12.9                   
d_y = timestep * p.ang_speed * v_y
    25                                           
    26   1000000       650802      0.7     12.2                   
p.x += d_x
    27   1000000       622337      0.6     11.7                   
p.y += d_y

The output is quite intuitive and is divided into columns:

•	 Line number: The number of the line that was run
•	 Hits: The number of times that line was run
•	 Time: The execution time of the line in microseconds (Time)
•	 Per Hit: Time divided by hits
•	 % Time: Fraction of the total time spent executing that line
•	 Line Contents: the source of the corresponding line

By looking at the percentage column we can have a pretty good idea of where the 
time is spent. In this case, there are a few statements in the for loop body with a  
cost of around 10-20 percent each.

Optimizing our code
Now that we have identified exactly how the time is spent, we can modify the code 
and assess the change in performance.

There are a few different ways to tune up our pure Python code. The way that 
usually produces the most remarkable results is to change the algorithm. In this case, 
instead of calculating the velocity and adding small steps, it would be more efficient 
(and correct, as it is not an approximation) to express the equations of motion in 
terms of radius r and angle alpha (instead of x and y), and then calculate the points 
on a circle using the equation:

x = r * cos(alpha)
y = r * sin(alpha)
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Another way lies in minimizing the number of instructions. For example, we can  
pre-calculate the factor timestep * p.ang_speed that doesn't change with time. 
We can exchange the loop order (first we iterate on particles, then we iterate on time 
steps) and put the calculation of the factor outside of the loop on the particles.

The line by line profiling showed also that even simple assignment operations can 
take a considerable amount of time. For example, the following statement takes more 
than 10 percent of the total time:

 v_x = (-p.y)/norm

Therefore, a way to optimize the loop is reducing the number of assignment 
operations. To do that, we can avoid intermediate variables by sacrificing  
readability and rewriting the expression in a single and slightly more complex 
statement (notice that the right-hand side gets evaluated completely before being 
assigned to the variables):

p.x, p.y = p.x - t_x_ang*p.y/norm, p.y + t_x_ang * p.x/norm

This leads to the following code:

    def evolve_fast(self, dt):
        timestep = 0.00001
        nsteps = int(dt/timestep)
        
        # Loop order is changed
        for p in self.particles:
            t_x_ang = timestep * p.ang_speed
            for i in range(nsteps):
                norm = (p.x**2 + p.y**2)**0.5
                p.x, p.y = (p.x - t_x_ang *  p.y/norm, 
                           p.y + t_x_ang * p.x/norm)

After applying the changes we should make sure that the result is still the same, by 
running our test. We can then compare the execution times using our benchmark:

$ time python simul.py # Performance Tuned
real    0m0.756s
user    0m0.714s
sys    0m0.036s

$ time python simul.py # Original
real    0m0.863s
user    0m0.831s
sys    0m0.028s

By acting on pure Python we obtained just a modest increment in speed.
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The dis module
Sometimes, it's not easy to evaluate how many operations a Python statement will 
take. In this section, we will explore Python internals to estimate the performance of 
Python statements. Python code gets converted to an intermediate representation—
called bytecode—that gets executed by the Python virtual machine.

To help inspect how the code gets converted into bytecode we can use the Python 
module dis (disassemble). Its usage is really simple, it is sufficient to call the 
function dis.dis on the ParticleSimulator.evolve method:

import dis
from simul import ParticleSimulator
dis.dis(ParticleSimulator.evolve)

This will generate, for each line, a list of bytecode instructions. For example, the 
statement v_x = (-p.y)/norm is expanded in the following set of instructions:

20         85 LOAD_FAST                5 (p)
             88 LOAD_ATTR                4 (y)
             91 UNARY_NEGATIVE       
             92 LOAD_FAST                6 (norm)
             95 BINARY_TRUE_DIVIDE   

             96 STORE_FAST               7 (v_x)

LOAD_FAST loads a reference of the variable p onto the stack, LOAD_ATTR loads the 
y attribute of the item present on top of the stack. The other instructions (UNARY_
NEGATIVE and BINARY_TRUE_DIVIDE) simply do arithmetic operations on top-of-
stack items. Finally, the result is stored in v_x (STORE_FAST).

By analyzing the complete dis output we can see that the first version of the 
loop produces 51 bytecode instructions, while the second gets converted into 35 
instructions.

The dis module helps discover how the statements get converted and serve mainly 
as an exploration and learning tool of the Python bytecode representation.

To improve our performance even further, we could keep trying to figure out other 
approaches to reduce the amount of instructions. It's clear however, that this approach 
has some limits and it is probably not the right tool for the job. In the next chapter,  
we will see how to speed up those kinds of calculations with the help of NumPy.
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Profiling memory usage with  
memory_profiler
In some cases, memory usage constitutes an issue. For example, if we want to handle 
a huge number of particles we will have a memory overhead due to the creation of 
many Particle instances.

The module memory_profiler summarizes, in a way similar to line_profiler, the 
memory usage of the process.

The memory_profiler package is also available on the 
Python Package Index. You should also install the psutil 
module (https://code.google.com/p/psutil/) as an 
optional dependency, it will make memory_profiler run 
considerably faster.

Just like line_profiler, memory_profiler also requires the instrumentation of the 
source code, by putting a @profile decorator on the function we intend to monitor. 
In our case, we want to analyze the function benchmark.

We can slightly change benchmark to instantiate a considerable amount (100000) of 
Particle instances and decrease the simulation time:

def benchmark_memory():
    particles = [Particle(uniform(-1.0, 1.0),
                          uniform(-1.0, 1.0),
                          uniform(-1.0, 1.0))
                  for i in range(100000)]
    
    simulator = ParticleSimulator(particles)
    simulator.evolve(0.001)

We can use memory_profiler from an IPython shell through the magic  
command %mprun:

In [1]: %load_ext memory_profiler
In [2]: from simul import benchmark_memory
In [3]: %mprun -f benchmark_memory benchmark_memory()
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Line #    Mem usage    Increment   Line Contents
==============================================
   135     45.5 MiB      0.0 MiB   def benchmark_memory():
   136     45.5 MiB      0.0 MiB       particles = 
[Particle(uniform(-1.0, 1.0),
   137                                                       
uniform(-1.0, 1.0),
   138                                                       
uniform(-1.0, 1.0))
   139     71.2 MiB     25.7 MiB                     for i in 
range(100000)]
   140                                 
   141     71.2 MiB      0.0 MiB       simulator = 
ParticleSimulator(particles)
   142     71.3 MiB      0.1 MiB       simulator.evolve(0.001)

It is possible to run memory_profiler from the shell using the mprof 
run command after adding the @profile decorator.

From the output we can see that 100000 Particle objects take 25.7 MiB of memory.

1 MiB (mebibyte) is equivalent to 10242 = 1,048,576 bytes. 
It is different from 1 MB (megabyte), which is equivalent to 
10002 = 1,000,000 bytes.

We can use __slots__ on the Particle class to reduce its memory footprint. This 
feature saves some memory by avoiding storing the variables of the instance in an 
internal dictionary. This optimization has a drawback: it prevents the addition of 
attributes other than the ones specified in __slots__ (to use this feature in Python 2 
you should make sure that you are using new-style classes):

class Particle: 
# class Particle(object):  # New-style class for Python 2

    __slots__ = ('x', 'y', 'ang_speed')
    
    def __init__(self, x, y, ang_speed):
        self.x = x
        self.y = y
        self.ang_speed = ang_speedWe can now re-run our benchmark:
In [1]: %load_ext memory_profiler
In [2]: from simul import benchmark_memory
In [3]: %mprun -f benchmark_memory benchmark_memory()
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Line #    Mem usage    Increment   Line Contents
==============================================
   138     45.5 MiB      0.0 MiB   def benchmark_memory():
   139     45.5 MiB      0.0 MiB       particles = 
[Particle(uniform(-1.0, 1.0),
   140                                                       
uniform(-1.0, 1.0),
   141                                                       
uniform(-1.0, 1.0))
   142     60.2 MiB     14.7 MiB                     for i in 
range(100000)]
   143                                 
   144     60.2 MiB      0.0 MiB       simulator = 
ParticleSimulator(particles)
   145     60.3 MiB      0.1 MiB       simulator.evolve(0.001)

By rewriting the Particle class using __slots__ we can save 11 MiB of memory.

Performance tuning tips for pure  
Python code
As a rule of thumb, when optimizing pure Python code, you should look at what 
is available in the standard library. The standard library contains clever algorithms 
for the most common data structures such as lists, dicts, and sets. Furthermore, a lot 
of standard library modules are implemented in C and have fast processing times. 
However, it's important to always time the different solutions—the outcomes are 
often unpredictable.

The collections module provides extra data containers that can efficiently 
handle some common operations. For example, you can use deque in place of a 
list when you need to pop items from the start and append new items at the end. 
The collections module also includes a Counter class that can be used to count 
repeated elements in an iterable object. Beware, that Counter can be slower than  
the equivalent code written with a standard loop over a dictionary:

def counter_1():
    items = [random.randint(0, 10) for i in range(10000)]
    return Counter(items)

def counter_2():
    items = [random.randint(0, 10) for i in range(10000)]
    counter = {}
    for item in items:
        if item not in counter:
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            counter[item] = 0
        else:
            counter[item] += 1
    return counter

You can put the code in a file named purepy.py and time it through IPython:

In [1]: import purepy
In [2]: %timeit purepy.counter_1()
100 loops, best of 3: 10.1 ms per loop
In [3]: %timeit purepy.counter_2()
100 loops, best of 3: 9.11 ms per loop

In general, list comprehension and generators should be preferred in place of explicit 
loops. Even if the speedup over a standard loop is modest, this is a good practice 
because it improves readability. We can see in the following example, that both list 
comprehension and generator expressions are faster than an explicit loop when 
combined with the function sum:

def loop():
    res = []
    for i in range(100000):
        res.append(i * i)
    return sum(res)

def comprehension():
    return sum([i * i for i in range(100000)])

def generator():
    return sum(i * i for i in range(100000))

We can add those functions to purepy.py and test with IPython:

In [1]: import purepy
In [2]: %timeit purepy.loop()
100 loops, best of 3: 8.26 ms per loop
In [3]: %timeit purepy.comprehension()
100 loops, best of 3: 5.39 ms per loop
In [4]: %timeit purepy.generator()
100 loops, best of 3: 5.07 ms per loop

The bisect module can help with fast insertion and retrieval of elements, while 
maintaining a sorted list.

Raw optimization of pure Python code is not very effective, unless there is a 
substantial algorithmic advantage. The second-best way to speed up your code is  
to use external libraries specifically designed for the purpose, such as numpy, or to 
write extensions modules in a more "down to the metal" language such as C with  
the help of Cython.
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Summary
In this chapter, we introduced the basic principles of optimization and we applied 
those principles to our test application. The most important thing is identifying the 
bottlenecks in the application before editing the code. We saw how to write and 
time a benchmark using the time Unix command and the Python timeit module. 
We learned how to profile our application using cProfile, line_profiler, and 
memory_profiler, and how to analyze and navigate graphically the profiling data 
with KCachegrind. We surveyed some of the strategies to optimize pure Python  
code by leveraging the tools available in the standard library.

In the next chapter, we will see how to use numpy to dramatically speedup 
computations in an easy and convenient way.



Fast Array Operations  
with NumPy

NumPy is the de facto standard for scientific computing in Python. It extends Python 
with a flexible multidimensional array that allows fast mathematical calculations.

NumPy works as a framework that allows coding complex operations using a 
concise syntax. The multidimensional array (numpy.ndarray) is internally based on 
C arrays: in this way, the developer can easily interface NumPy with existing C and 
FORTRAN code. NumPy constitutes a bridge between Python and the legacy code 
written using those languages.

In this chapter, we will learn how to create and manipulate NumPy arrays. We will 
also explore the NumPy broadcasting feature to rewrite complex mathematical 
expressions in an efficient and succinct manner.

In the last few years a number of packages were developed to further increase the 
speed of NumPy. We will explore one of these packages, numexpr, that optimizes 
array expressions and takes advantage of multi-core architectures.

Getting started with NumPy
NumPy is founded around its multidimensional array object, numpy.ndarray. 
NumPy arrays are a collection of elements of the same data type; this fundamental 
restriction allows NumPy to pack the data in an efficient way. By storing the data in 
this way NumPy can handle arithmetic and mathematical operations at high speed.
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Creating arrays
You can create NumPy arrays using the numpy.array function. It takes a list-like 
object (or another array) as input and, optionally, a string expressing its data type. 
You can interactively test the array creation using an IPython shell as follows:

In [1]: import numpy as np
In [2]: a = np.array([0, 1, 2])

Every NumPy array has a data type that can be accessed by the dtype attribute, as 
shown in the following code. In the following code example, dtype is a 64-bit integer:

In [3]: a.dtype
Out[3]: dtype('int64')

If we want those numbers to be treated as a float type of variable, we can either 
pass the dtype argument in the np.array function or cast the array to another data 
type using the astype method, as shown in the following code:

In [4]: a = np.array([1, 2, 3], dtype='float32')
In [5]: a.astype('float32')
Out[5]: array([ 0.,  1.,  2.], dtype=float32)

To create an array with two dimensions (an array of arrays) we can initialize the 
array using a nested sequence, shown as follows:

In [6]: a = np.array([[0, 1, 2], [3, 4, 5]])
In [7]: print(a)
Out[7]: [[0 1 2] 
        [3 4 5]]

The array created in this way has two dimensions—axes in NumPy's jargon. Such an 
array is like a table that contains two rows and three columns. We can access the axes 
structure using the ndarray.shape attribute:

In [7]: a.shape
Out[7]: (2, 3)
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Arrays can also be reshaped, only as long as the product of the shape dimensions 
is equal to the total number of elements in the array. For example, we can reshape 
an array containing 16 elements in the following ways: (2, 8), (4, 4), or (2, 2, 4). To 
reshape an array, we can either use the ndarray.reshape method or directly change 
the ndarray.shape attribute. The following code illustrates the use of the ndarray.
reshape method:

In [7]: a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 
                      9, 10, 11, 12, 13, 14, 15])
In [7]: a.shape
Out[7]: (16,)
In [8]: a.reshape(4, 4) # Equivalent: a.shape = (4, 4)
Out[8]:
array([[ 0,  1,  2,  3], 
       [ 4,  5,  6,  7], 
       [ 8,  9, 10, 11], 
       [12, 13, 14, 15]])

Thanks to this property you are also free to add dimensions of size one. You can 
reshape an array with 16 elements to (16, 1), (1, 16), (16, 1, 1), and so on.

NumPy provides convenience functions, shown in the following code, to create 
arrays filled with zeros, filled with ones, or without an initialization value (empty—
their actual value is meaningless and depends on the memory state). Those functions 
take the array shape as a tuple and optionally its dtype:

In [8]: np.zeros((3, 3))
In [9]: np.empty((3, 3))
In [10]: np.ones((3, 3), dtype='float32')

In our examples, we will use the numpy.random module to generate random floating 
point numbers in the (0, 1) interval. In the following code we use the np.random.
rand function to generate an array of random numbers of shape (3, 3):

In [11]: np.random.rand(3, 3)

Sometimes, it is convenient to initialize arrays that have a similar shape to other 
arrays. Again, NumPy provides some handy functions for that purpose such as 
zeros_like, empty_like, and ones_like. These functions are as follows:

In [12]: np.zeros_like(a)
In [13]: np.empty_like(a)
In [14]: np.ones_like(a)
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Accessing arrays
The NumPy array interface is, on a shallow level, similar to Python lists. They can  
be indexed using integers, and can also be iterated using a for loop. The following 
code shows how to index and iterate an array:

In [15]: A = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])
In [16]: A[0]
Out[16]: 0
In [17]: [a for a in A]
Out[17]: [0, 1, 2, 3, 4, 5, 6, 7, 8]

It is also possible to index an array in multiple dimensions. If we take a (3, 3) array 
(an array containing 3 triplets) and we index the first element, we obtain the first 
triplet shown as follows:

In [18]: A = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
In [19]: A[0]
Out[19]: array([0, 1, 2])

We can index the triplet again by adding the other index separated by a comma.  
To get the second element of the first triplet we can index using [0, 1], as shown  
in the following code:

In [20]: A[0, 1]
Out[20]: 1

NumPy allows you to slice arrays in single and multiple dimensions. If we index  
on the first dimension we will get a collection of triplets shown as follows:

In [21]: A[0:2]
Out[21]: array([[0, 1, 2],
               [3, 4, 5]])

If we slice the array with [0:2]. for every selected triplet we extract the first two 
elements, resulting in a (2, 2) array shown in the following code:

In [22]: A[0:2, 0:2]
Out[22]: array([[0, 1],
                [3, 4]])

Intuitively, you can update values in the array by using both numerical indexes  
and slices. The syntax is as follows:

In [23]: A[0, 1] = 8
In [24]: A[0:2, 0:2] = [[1, 1], [1, 1]]
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Indexing with the slicing syntax is fast because it doesn't make copies of 
the array. In NumPy terminology it returns a view over the same memory 
area. If we take a slice of the original array and then change one of its 
values; the original array will be updated as well. The following code 
illustrates an example of the same:

In [25]: a = np.array([1, 1, 1, 1])
In [26]: a_view = a[0:2]
In [27]: a_view[0] = 2
In [28]: print(a)
Out[28]: [2 1 1 1]

We can take a look at another example that shows how the slicing syntax can be used 
in a real-world scenario. We define an array r_i, shown in the following line of code, 
which contains a set of 10 coordinates (x, y); its shape will be (10, 2):

In [29]: r_i = np.random.rand(10, 2)

A typical operation is extracting the x component of each coordinate. In other words, 
you want to extract the items [0, 0], [1, 0], [2, 0], and so on, resulting in an array with 
shape (10,). It is helpful to think that the first index is moving while the second one is 
fixed (at 0). With this in mind, we will slice every index on the first axis (the moving 
one) and take the first element (the fixed one) on the second axis, as shown in the 
following line of code:

In [30]: x_i = r_i[:, 0]

On the other hand, the following expression of code will keep the first index fixed 
and the second index moving, giving the first (x, y) coordinate:

In [31]: r_0 = r_i[0, :]

Slicing all the indexes over the last axis is optional; using r_i[0] has the same effect 
as r_i[0, :].

NumPy allows to index an array by using another NumPy array made of either 
integer or Boolean values—a feature called fancy indexing.

If you index with an array of integers, NumPy will interpret the integers as indexes 
and will return an array containing their corresponding values. If we index an array 
containing 10 elements with [0, 2, 3], we obtain an array of size 3 containing the 
elements at positions 0, 2 and 3. The following code gives us an illustration of this 
concept:

In [32]: a = np.array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
In [33]: idx = np.array([0, 2, 3])
In [34]: a[idx]
Out[34]: array([9, 7, 6])
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You can use fancy indexing on multiple dimensions by passing an array for each 
dimension. If we want to extract the elements [0, 2] and [1, 3] we have to pack all the 
indexes acting on the first axis in one array, and the ones acting on the second axis in 
another. This can be seen in the following code:

In [35]: a = np.array([[0, 1, 2], [3, 4, 5],
                       [6, 7, 8], [9, 10, 11]])
In [36]: idx1 = np.array([0, 1])
In [37]: idx2 = np.array([2, 3])
In [38]: a[idx1, idx2]

You can also use normal lists as index arrays, but not tuples. For 
example the following two statements are equivalent:

>>> a[np.array([0, 1])] # is equivalent to
>>> a[[0, 1]]

However, if you use a tuple, NumPy will interpret the following 
statement as an index on multiple dimensions:

>>> a[(0, 1)] # is equivalent to 
>>> a[0, 1]

The index arrays are not required to be one-dimensional; we can extract elements 
from the original array in any shape. For example we can select elements from the 
original array to form a (2, 2) array shown as follows:

In [39]: idx1 = [[0, 1], [3, 2]]
In [40]: idx2 = [[0, 2], [1, 1]]
In [41]: a[idx1, idx2]
Out[41]: array([[ 0,  5], 
                [10,  7]])

The array slicing and fancy indexing features can be combined. For example, this is 
useful if we want to swap the x and y columns in a coordinate array. In the following 
code, the first index will be running over all the elements (a slice), and for each of 
those we extract the element in position 1 (the y) first and then the one in position 0 
(the x):

In [42]: r_i = np.random(10, 2)
In [43]: r_i[:, [0, 1]] = r_i[:, [1, 0]]
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When the index array is a boolean there are slightly different rules. The Boolean 
array will act like a mask; every element corresponding to True will be extracted and 
put in the output array. This procedure is shown as follows:

In [44]: a = np.array([0, 1, 2, 3, 4, 5])
In [45]: mask = np.array([True, False, True, False, False, False])
In [46]: a[mask]
Out[46]: array([0, 2])

The same rules apply when dealing with multiple dimensions. Furthermore, if the 
index array has the same shape as the original array, the elements corresponding to 
True will be selected and put in the resulting array.

Indexing in NumPy is a reasonably fast operation. Anyway, when speed is critical, 
you can use the slightly faster numpy.take and numpy.compress functions to 
squeeze out a little more speed. The first argument of numpy.take is the array we 
want to operate on, and the second is the list of indexes we want to extract. The 
last argument is axis; if not provided, the indexes will act on the flattened array, 
otherwise they will act along the specified axis. The following code shows the use of 
np.take and its execution time compared to fancy indexing:

In [47]: r_i = np.random(100, 2)
In [48]: idx = np.arange(50) # integers 0 to 50
In [49]: %timeit np.take(r_i, idx, axis=0)
1000000 loops, best of 3: 962 ns per loop
In [50]: %timeit r_i[idx]
100000 loops, best of 3: 3.09 us per loop

The similar, but a faster way to index using Boolean arrays is numpy.compress 
which works in the same way as numpy.take. The use of numpy.compress is shown 
as follows:

In [51]: idx = np.ones(100, dtype='bool') # all True values
In [52]: %timeit np.compress(idx, r_i, axis=0)
1000000 loops, best of 3: 1.65 us per loop
In [53]: %timeit r_i[idx]
100000 loops, best of 3: 5.47 us per loop

Broadcasting
The true power of NumPy lies in its fast mathematical operations. The approach 
used by NumPy is to avoid stepping into Python by performing an element-wise 
calculation between matching arrays.
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Whenever you do an arithmetic operation on two arrays (like a product), if the two 
operands have the same shape, the operation will be applied in an element-wise 
fashion. For example, upon multiplying two (2, 2) arrays, the operation will be done 
between pairs of corresponding elements, producing another (2, 2) array, as shown 
in the following code:

In [54]: A = np.array([[1, 2], [3, 4]])
In [55]: B = np.array([[5, 6], [7, 8]])
In [56]: A * B
Out[56]: array([[ 5, 12], 
                [21, 32]])

If the shapes of the operand don't match, NumPy will attempt to match them using 
certain rules—a feature called broadcasting. If one of the operands is a single value,  
it will be applied to every element of the array, as shown in the following code:

In [57]: A * 2
Out[58]: array([[2, 4],
                [6, 8]])

If the operand is another array, NumPy will try to match the shapes starting from  
the last axis. For example, if we want to combine an array of shape (3, 2) with one  
of shape (2,), the second array is repeated three times to generate a (3, 2) array.  
The array is broadcasted to match the shape of the other operand, as shown in  
the following figure:

a1 a2

a3 a4

a5 a6

b1 b2 copiesb1 b2

b1 b2

If the shapes mismatch, for example by combining an array (3, 2) with an array (2, 2), 
NumPy will throw an exception.

If one of the axes size is 1, the array will be repeated over this axis until the shapes 
match. To illustrate that point, if we have an array of the following shape:

5, 10, 2

and we want to broadcast it with an array (5, 1, 2), the array will be repeated on the 
second axis for 10 times which is shown as follows:

5, 10, 2
5,  1, 2 → repeated
- - - -
5, 10, 2
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We have seen earlier, that we can freely reshape arrays to add axes of size 1. Using 
the numpy.newaxis constant while indexing will introduce an extra dimension. For 
instance, if we have a (5, 2) array and we want to combine it with one of shape (5, 
10, 2), we could add an extra axis in the middle, as shown in the following code, to 
obtain a compatible (5, 1, 2) array:

In [59]: A = np.random.rand(5, 10, 2)
In [60]: B = np.random.rand(5, 2)
In [61]: A * B[:, np.newaxis, :]

This feature can be used, for example, to operate on all possible combinations of the 
two arrays. One of these applications is the outer product. If we have the following 
two arrays:

a = [a1, a2, a3]
b = [b1, b2, b3]

The outer product is a matrix containing the product of all the possible combinations 
(i, j) of the two array elements, as shown in the following code:

a x b = a1*b1, a1*b2, a1*b3
        a2*b1, a2*b2, a2*b3
        a3*b1, a3*b2, a3*b3

To calculate this using NumPy we will  repeat the elements [a1, a2, a3] in one 
dimension, the elements [b1, b2, b3] in another dimension, and then take their 
product, as shown in the following figure:. 

b1a1 a2 a3 b1 b2

b2

b3

a1 a2 a3

a1 a2 a3

b2

b3

b2

b2

b3

a1

b2a1

b3a1

b1a2

b2a2

b3a2

b1a3

b2a3

b3a3

(1, 3) (3, 1) (3, 3)

Our strategy will be to transform the array a from shape (3,) to shape (3, 1), and the 
array b from shape (3,) to shape (1, 3). The two arrays are broadcasted in the two 
dimensions and get multiplied together using the following code:

AB = a[:, np.newaxis] * b[np.newaxis, :]

This operation is very fast and extremely effective as it avoids Python loops and is 
able to process a high number of elements.
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Mathematical operations
NumPy includes the most common mathematical operations available for 
broadcasting, by default, ranging from simple algebra to trigonometry, rounding, 
and logic. For instance, to take the square root of every element in the array we  
can use the numpy.sqrt function, as shown in the following code:

In [59]: np.sqrt(np.array([4, 9, 16]))
Out[59]: array([2., 3., 4.])

The comparison operators are extremely useful when trying to filter certain elements 
based on a condition. Imagine that we have an array of random numbers in the range 
[0, 1] and we want to extract the numbers greater than 0.5. We can use the > operator 
on the array; The result will be a boolean array, shown as follows:

In [60]: a = np.random.rand(5, 3)
In [61]: a > 0.5
Out[61]: array([[ True, False,  True], 
                [ True,  True,  True], 
                [False,  True,  True], 
                [ True,  True, False], 
                [ True,  True, False]], dtype=bool)

The resulting boolean array can then be reused as an index to retrieve the elements 
greater than 0.5, as shown in the following code:

In [62]: a[a > 0.5]
In [63]: print(a[a>0.5])
[ 0.9755  0.5977  0.8287  0.6214  0.5669  0.9553  0.5894 
  0.7196  0.9200  0.5781  0.8281 ]

NumPy also implements methods such as ndarray.sum, which takes the sum of 
all the elements on an axis. If we have an array (5, 3), we can use the ndarray.sum 
method, as follows, to add elements on the first axis, the second axis, or over all the 
elements of the array:

In [64]: a = np.random.rand(5, 3)
In [65]: a.sum(axis=0)
Out[65]: array([ 2.7454,  2.5517,  2.0303])
In [66]: a.sum(axis=1)
Out[66]: array([ 1.7498,  1.2491,  1.8151,  1.9320,  0.5814])
In [67]: a.sum() # With no argument operates on flattened array
Out[67]: 7.3275

Notice that by summing the elements over an axis we eliminate that axis. From the 
previous example, the sum on the axis 0 produces a (3,) array while the sum on the 
axis 1 produces a (5,) array.
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Calculating the Norm
We can review the basic concepts illustrated in this section by calculating the Norm 
of a set of coordinates. For a two-dimensional vector the norm is defined as:

norm = sqrt(x^2 + y^2)

Given an array of 10 coordinates (x, y) we want to find the Norm of each coordinate. 
We can calculate the norm by taking these steps:

1.	 Square the coordinates: obtaining an array which contains (x**2, y**2) 
elements.

2.	 Sum those using numpy.sum over the last axis.
3.	 Take the square root, element-wise, using numpy.sqrt.

The final expression can be compressed in a single line:

In [68]: r_i = np.random.rand(10, 2)
In [69]: norm = np.sqrt((r_i ** 2).sum(axis=1))
In [70]: print(norm)
[ 0.7314  0.9050  0.5063  0.2553  0.0778   0.9143 
  1.3245  0.9486  1.010   1.0212]

Rewriting the particle simulator in NumPy
In this section, we will optimize our particle simulator by rewriting some 
parts of it in NumPy. From the profiling we did in Chapter 1, Benchmarking and 
Profiling, the slowest part of our program is the following loop contained in the 
ParticleSimulator.evolve method:

for i in range(nsteps):
  for p in self.particles:

    norm = (p.x**2 + p.y**2)**0.5
    v_x = (-p.y)/norm
    v_y = p.x/norm

    d_x = timestep * p.ang_speed * v_x
    d_y = timestep * p.ang_speed * v_y

    p.x += d_x
    p.y += d_y
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We may notice that the body of the loop acts solely on the current particle. If we had 
an array containing the particle positions and angular speed, we could rewrite the 
loop using a broadcasted operation. In contrast, the loop over the time steps depends 
on the previous step and cannot be treated in a parallel fashion.

It's natural then, to store all the array coordinates in an array of shape (nparticles, 2) 
and the angular speed in an array of shape (nparticles,). We'll call those arrays r_i 
and ang_speed_i and initialize them using the following code:

r_i = np.array([[p.x, p.y] for p in self.particles])
ang_speed_i = np.array([p.ang_speed for p in self.particles])

The velocity direction, perpendicular to the vector (x, y), was defined as:

v_x = -y / norm
v_y = x / norm

The Norm can be calculated using the strategy illustrated in the Calculating the Norm 
section under the Getting Started with NumPy heading. The final expression is shown 
in the following line of code:

norm_i = ((r_i ** 2).sum(axis=1))**0.5

For the components (-y, x) we need first to swap the x and y columns in r_i and then 
multiply the first column by -1, as shown in the following code:

v_i = r_i[:, [1, 0]] / norm_i
v_i[:, 0] *= -1

To calculate the displacement we need to compute the product of v_i, ang_speed_i, 
and timestep. Since ang_speed_i is of shape (nparticles,) it needs a new axis in order 
to operate with v_i of shape (nparticles, 2). We will do that using numpy.newaxis 
constant as follows:

d_i = timestep * ang_speed_i[:, np.newaxis] * v_i
r_i += d_i

Outside the loop, we have to update the particle instances with the new coordinates 
x and y as follows:

for i, p in enumerate(self.particles):
  p.x, p.y = r_i[i]
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To summarize, we will implement a method called ParticleSimulator. 
evolve_numpy and benchmark it against the pure Python version, renamed  
as ParticleSimulator.evolve_python. The complete ParticleSimulator.
evolve_numpy method is shown in the following code:

def evolve_numpy(self, dt):
  timestep = 0.00001
  nsteps = int(dt/timestep)

  r_i = np.array([[p.x, p.y] for p in self.particles])
  ang_speed_i = np.array([p.ang_speed for p in self.particles])

  for i in range(nsteps):

    norm_i = np.sqrt((r_i ** 2).sum(axis=1))
    v_i = r_i[:, [1, 0]]
    v_i[:, 0] *= -1
    v_i /= norm_i[:, np.newaxis]
    d_i = timestep * ang_speed_i[:, np.newaxis] * v_i
    r_i += d_i

    for i, p in enumerate(self.particles):
      p.x, p.y = r_i[i]

We also update the benchmark to conveniently change the number of particles and 
the simulation method as follows:

def benchmark(npart=100, method='python'):
  particles = [Particle(uniform(-1.0, 1.0), 
    uniform(-1.0, 1.0), 
    uniform(-1.0, 1.0)) 
    for i in range(npart)]

  simulator = ParticleSimulator(particles)

  if method=='python':
    simulator.evolve_python(0.1)

  elif method == 'numpy':
    simulator.evolve_numpy(0.1)
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We can run the updated benchmark in an IPython session as follows:

In [1]: from simul import benchmark
In [2]: %timeit benchmark(100, 'python')
1 loops, best of 3: 614 ms per loop
In [3]: %timeit benchmark(100, 'numpy')
1 loops, best of 3: 415 ms per loop

We have some improvement but it doesn't look like a huge speed boost. The power of 
NumPy is revealed when handling big arrays. If we increase the number of particles, 
we will notice a more significant performance boost. We can re-run the benchmark 
with a higher number of particles using the following code:

In [4]: %timeit benchmark(1000, 'python')
1 loops, best of 3: 6.13 s per loop
In [5]: %timeit benchmark(1000, 'numpy')
1 loops, best of 3: 852 ms per loop

The plot in the following figure was produced by running the benchmark with 
different particle numbers:
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The plot shows that both implementations scale linearly with the particle size, but 
the runtime in the pure Python version (denoted with diamonds) grows much faster 
than the NumPy version (denoted with circles); at greater sizes we have a greater 
NumPy advantage. In general, when using NumPy you should try to pack things 
into large arrays and group the calculations by using the broadcasting feature.
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Reaching optimal performance with 
numexpr
When handling complex expressions, NumPy stores intermediate results in the 
memory. David M. Cooke wrote a package called numexpr which optimizes and 
compiles array expressions on-the-fly. It works by optimizing the usage of the CPU 
cache and by taking advantage of multiple processors.

Its usage is generally straightforward and is based on a single function—numexpr.
evaluate. The function takes a string containing an array expression as its first 
argument. The syntax is basically identical to that of NumPy. For example, we can 
calculate a simple a + b * c expression in the following way:

a = np.random.rand(10000)
b = np.random.rand(10000)
c = np.random.rand(10000)
d = ne.evaluate('a + b * c')

The numexpr package increases the performances in almost all cases, but to achieve 
a substantial advantage you should use it with large arrays. An application that 
involves a large array is the calculation of a distance matrix. In a particle system, a 
distance matrix contains all the possible distances between the particles. To calculate 
it, we should first calculate all the vectors connecting any two particles (i, j) defined  
as follows:

x_ij = x_j - x_i
y_ij = y_i - y_j

Then, we calculate the length of this vector by taking its Norm, as in the  
following code:

d_ij = sqrt(x_ij**2 + y_ij**2)

We can write this in NumPy by employing the usual broadcasting rules (the 
operation is similar to the outer product):

r = np.random.rand(10000, 2)
r_i = r[:, np.newaxis]
r_j = r[np.newaxis, :]
r_ij = r_j – r_i

Finally, we calculate the Norm over the last axis using the following line of code:

d_ij = np.sqrt((r_ij ** 2).sum(axis=2))
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Rewriting the same expression using the numexpr syntax is extremely easy.  
The numexpr package doesn't support slicing in its array expression, therefore we 
first need to prepare the operands for broadcasting by adding an extra dimension  
as follows:

r = np.random(10000, 2)
r_i = r[:, np.newaxis]
r_j = r[np.newaxis, :]

At that point, we should try to pack as many operations as possible in a single 
expression to allow a significant optimization.

Most of the NumPy mathematical functions are also available in numexpr; however, 
there is a limitation. The reduction operations—the ones which reduce an axis, such as 
sum—have to happen last. So, we have to first calculate the sum, step out of numexpr, 
and calculate the square root in another expression. The numexpr code for those 
operations is as follows:

d_ij = ne.evaluate('sum((r_j – r_i)**2, 2)')
d_ij = ne.evaluate('sqrt(d_ij)')

The numexpr compiler will optimize memory usage by avoiding the storage 
of intermediate results and by taking advantage of multiple processors. In the 
distance_matrix.py file you will find two functions that implement the two 
versions of the distance matrix calculation: distance_matrix_numpy and  
distance_matrix_numexpr. We can import and benchmark them as follows:

from distance_matrix import (distance_matrix_numpy,
                             distance_matrix_numexpr)
%timeit distance_matrix_numpy(10000)
1 loops, best of 3: 3.56 s per loop
%timeit distance_matrix_numexpr(10000)
1 loops, best of 3: 858 ms per loop

By simply copying the expressions using numexpr we were able to obtain a  
4.5x increase in performance in a real-world scenario over standard NumPy.  
The numexpr package can be used every time you need to optimize a NumPy 
expression that involves large arrays and complex operations, and you can do  
so with minimal changes in the code.
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Summary
In this chapter, we learned how to manipulate NumPy arrays and how to write 
fast mathematical expressions using array broadcasting. This knowledge will help 
you to design better programs while obtaining massive performance gains. We also 
introduced the numexpr library to further increase the speed of our calculations with 
a minimal amount of effort.

NumPy works very well when handling independent sets of inputs, but it's not 
suitable when the expressions grow complex and cannot be split in element-wise 
operations. In such cases, we can leverage Python capabilities as a glue language  
by interfacing it with C using the Cython package.





C Performance with Cython
Cython is a language that extends Python by adding static typing to functions, 
variables, and classes. Cython combines the simplicity of Python and the efficiency 
of C. After rewriting your scripts in Cython you can compile them to C or C++, 
generating efficient code in a straightforward way.

Cython also acts as a bridge between Python and C, as it can be used to create 
interfaces to external C code. By creating bindings, you can reuse fast C routines  
in your scripts, effectively using Python as a glue language.

In this chapter we will learn:

•	 Cython syntax basics
•	 How to compile Cython programs
•	 How to use static typing to generate fast code
•	 How to efficiently manipulate arrays by making use of typed memoryviews.

Finally, we will apply our new Cython skills to profile and optimize the  
particle simulator.

While a minimum knowledge of C is helpful, this chapter focuses only on Cython in 
the context of Python optimization. Therefore, it doesn't require any C background.

Compiling Cython extensions
By design, the Cython syntax is a superset of Python. Cython can typically compile 
a Python module without requiring any change. Cython source files have the 
extension .pyx and they can be compiled to C using the cython command.
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Our first Cython script will contain a simple function that prints Hello, World! to the 
output. Create a new file hello.pyx containing the following code:

def hello():
  print('Hello, World!')

The cython command will read hello.pyx and generate the hello.c file:

$ cython hello.pyx

To compile hello.c to a Python extension module we will use the gcc compiler. We 
need to add some Python-specific compilation options that depend on the operating 
system. On Ubuntu 13.10, with the default Python installation, you can use the 
following options to compile:

$ gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -fno-strict-aliasing - 
  lm -I/usr/include/python3.3/ -o hello.so hello.c

This will produce a file called hello.so: a C extension module importable  
from Python.

>>> import hello
>>> hello.hello()
Hello, World!

Cython accepts both Python 2 and Python 3 as input and output 
languages. In other words, you can compile a Python 3 hello.pyx file 
using the -3 option:
$ cython -3 hello.pyx

The generated hello.c can be compiled without any changes to Python 
2 and Python 3 by including the corresponding headers with the -I 
option in gcc as follows:
$ gcc -I/usr/include/python3.3 # ... other options

$ gcc -I/usr/include/python2.7 # ... other options

A Cython program can be compiled in a more straightforward way by using 
distutils—the standard Python packaging tool. By writing a setup.py script we 
can compile the .pyx file directly to an extension module. To compile our hello.pyx 
example we need to write a setup.py containing the following code:

from distutils.core import setup
from Cython.Build import cythonize

setup(
  name='Hello', 
  ext_modules = cythonize('hello.pyx'), 
)
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In the first two lines of the previous code, we import the setup function and the 
cythonize helper. The setup function contains a few key-value pairs that tell 
distutils the name of the application and which extensions need to be built.

The cythonize helper takes either a string or a list of strings containing the  
Cython modules we want to compile. You can also use glob patterns using the 
following code:

cythonize(['hello.pyx', 'world.pyx', '*.pyx'])

To compile our extension module using distutils you can execute the setup.py 
script using the following code:

$ python setup.py build_ext --inplace

The build_ext option tells the script to build the extension modules indicated in 
ext_modules, and the --inplace option places the output hello.so file in the same 
location as the source file (instead of a build directory).

Cython modules can automatically be compiled using pyximport. By adding 
pyximport.install() at the beginning of your script (or issuing the command in 
your interpreter) you can import .pyx files directly; pyximport will transparently 
compile the corresponding Cython modules.

>>> import pyximport
>>> pyximport.install()
>>> import hello # This will compile hello.pyx

Unfortunately, pyximport will not work for all kinds of configurations (for example 
when they involve a combination of C and Cython files), but it comes in handy for 
testing simple scripts.

Since version 0.13, IPython includes the cythonmagic extension to interactively write 
and test a series of Cython statements. You can load the extensions in an IPython 
shell using load_ext:

In [1]: %load_ext cythonmagic

Once the extension is loaded you can use the %%cython cell magic to write a multi-line 
Cython snippet. In the following example, we define a hello_snippet function that 
will be compiled and added to the session namespace:

In [2]: %%cython
  ....:  def hello_snippet():
   ....:    print("Hello, Cython!")
  ....:
In [3]:  hello_snippet()
Hello,  Cython!
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Adding static types
In Python, variables have an associated type that can change during the execution. 
While this feature is desirable, as it makes the language more flexible, the interpreter 
needs to do type-checks and method look-ups to correctly handle operations 
between variables—an extra step that introduces a significant overhead. Cython 
extends the Python language with static type declarations; in this way it can generate 
efficient C code by avoiding the Python interpreter.

The main way to declare data types in Cython is by using cdef statements.  
The cdef keyword can be used in multiple contexts: to declare variables, functions, 
and extension types (cdef classes).

Variables
In Cython you can declare the type of a variable by prepending the variable with 
cdef and its respective type. For example, we can declare the variable i as a 16 bit 
integer in the following way:

cdef int i

The cdef statement supports multiple variable names on the same line, along with 
optional initialization values, as seen in the following line of code:

cdef double a, b = 2.0, c = 3.0

Typed variables are treated differently in comparison to standard variables.  
In Python, variables are often regarded as labels referring to objects in memory.  
At any point in the program, we can assign a string to a variable as follows:

a = 'hello'

The string hello will be bound to the variable a. At a different place in the program, 
we can assign to the same variable another value, for example an integer:

a = 1

Python will assign the integer object 1 to the variable a without any problem.
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Typed variables can be considered more like data containers; we store the value in 
the variable and only values of the same type are allowed to get in. For example, if 
we declare the variable a as an int type variable, and then we try to assign it to a 
double, Cython will trigger an error, as shown in the following code:

In [4]: %%cython
  ....: cdef int i
  ....: i = 3.0
  ....:
# Output has been cut
...cf4b.pyx:2:4 Cannot assign type 'double' to 'int'

Static typing allows useful optimizations. If we declare indexes to be used in a loop 
as integers, Cython will rewrite the loops in pure C without stepping into the Python 
interpreter. In the following example, we do an iteration 100 times and each time we 
increment the int variable j:

In [5]: %%cython
  ....: def example():
  ....:   cdef int i, j=0
  ....:   for i in range(100): 
  ....:      j += 1
  ....:   return j
  ....:
In [6]: example()
Out[6]: 100

To understand how big the improvement is, we will compare the speed with an 
analogous, pure Python loop:

In [7]: def example_python():
  ....:    j=0
  ....:    for i in range(100): 
  ....:      j += 1
  ....:    return j
  ....:
In [8]: %timeit example()
10000000 loops, best of 3: 25 ns per loop
In [9]: %timeit example_python()
100000 loops, best of 3: 2.74 us per loop

The speedup obtained by writing the loop with typing information is a whopping 
100x! This works because the Cython loop has first been converted to pure C and then 
to efficient machine code, while the Python loop still relies on the slow interpreter.
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We can declare a variable of any available C type, and we can also define custom types 
by using C structs, enums, and typedefs. An interesting example is that if we declare a 
variable to be of object type, the variable will accept any kind of Python object:

cdef object a_py
# both 'hello' and 1 are Python objects
a_py = 'hello'
a_py = 1

Sometimes, certain types of variables are compatible (such as float and int numbers) 
but not exactly the same. In Cython it is possible to convert (cast) between types 
by surrounding the destination type with < and > pointy brackets, as shown in the 
following code snippet:

cdef int a = 0
cdef double b
b = <double> a

Functions
You can add type information to the arguments of a Python function by specifying 
the type in front of the argument name. Such functions will work and perform like 
a regular Python function but its arguments will be type-checked. We can write a 
max_python function, which returns the greater value between two integers in the 
following way:

def max_python(int a, int b):
  return a if a > b else b

That function doesn't provide much benefit except for type-checking. To take 
advantage of Cython optimizations we have to declare the function using a cdef 
statement and an optional return type, as in the following code:

cdef int max_cython(int a, int b):
  return a if a > b else b

Functions declared in this way are translated to native C functions, which are 
not callable from Python. They have much less overhead compared to Python 
functions, and using them results in a substantial increase in performance. Their 
scope is restricted to the same Cython file, unless they're exposed in a definition 
file (refer to the Sharing Declarations section).
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Cython allows you to define functions that are both callable from Python and 
translatable to native C functions. If you declare a function with the keyword cpdef, 
Cython will generate two versions of the function—a Python version available to the 
interpreter, and a fast C function usable from Cython—achieving both convenience 
and speed. The cpdef syntax is equivalent to cdef, shown as follows:

 cpdef int max_hybrid(int a, int b):
  return a if a > b else b

Sometimes, the call overhead can be a performance issue even with C functions, 
especially when the same function is called many times in a critical loop. When the 
function body is small, it is convenient to add the inline keyword in front of the 
function definition; the function call will be removed and replaced by the function 
body. For instance, our following max function is a good candidate for inlining:

cdef inline int max_inline(int a, int b):
  return a if a > b else b

Classes
The cdef keyword can also be put in front of a class definition to create an extension 
type. An extension type is similar to a Python class but its attributes must have a type 
and are stored in an efficient C struct.

We can define an extension type by using the cdef class statement and declaring 
its attributes in the class body. For example, we can create an extension type Point, 
as shown in the following code, which stores two coordinates (x, y) of type double:

cdef class Point:
  cdef double x
  cdef double y
  
  def __init__(self, double x,double y):
    self.x = x
    self.y = y

Accessing the declared attributes in the class methods allows Cython to avoid the 
Python attribute look-up by replacing it with direct access to the struct fields. In 
this way, attribute access becomes an extremely fast operation.
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To take advantage of the struct access, Cython needs to know that the variable is an 
extension type at the time of compilation. You can use the extension type name (such 
as Point) in any context where you would use a standard one (such as double, float, 
int). For example, if we want a Cython function that calculates the norm of a Point, 
we have to declare the input variable as Point, as shown in the following code:

cdef double norm(Point p):
  return p.x**2 + p.y**2

By default, access to the attributes is restricted to Cython code. If you try to access  
an extension type attribute from Python, you will get an AttributeError shown  
as follows:

>>> a = Point(0.0, 0.0)
>>> a.x
AttributeError: 'Point' object has no attribute 'x'

In order to access attributes from Python code you have to use the public (for  
read-write access) or readonly specifiers in the attribute declaration, as shown  
in the following code:

cdef class Point:
  cdef public double x

Extension types do not support the addition of extra attributes. A workaround for 
this problem is subclassing the extension type, creating a derived Python class.

Sharing declarations
When writing your Cython modules, you may want to encapsulate generic functions 
and types in a separate file. Cython allows you to reuse those components with the 
cimport statement by writing a definition file.

Let's say we have a module with the functions max and min, and we want to reuse 
those functions in multiple Cython programs. If we simply write a .pyx file—also 
called implementation file—the functions declared are confined in the same module.

Definition files are also used to interface Cython with 
an external C code. The idea is to copy the types and 
function prototypes in the definition file and leave the 
implementation to the external C code.
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To share those functions we need to write a definition file, with a .pxd extension. 
Such a file only contains the types and function prototypes that we want share to 
other modules—a public interface. We can write the prototypes of our max and min 
functions in a file named mathlib.pxd as follows:

cdef int max(int a, int b)
cdef int min(int a, int b)

As you can see, we only write the function name and arguments, without 
implementing the function body.

The function implementation goes into the implementation file with the same base 
name but .pyx extension—mathlib.pyx:

cdef int max(int a, int b):
  return a if a > b else b

cdef int min(int a, int b):
  return a if a < b else b

The mathlib module is now importable from another Cython module.

To test our Cython module we will create a file named distance.pyx containing 
a function named chebyshev. The function will calculate the Chebyshev distance 
between two points, as shown in the following code. The Chebyshev distance 
between two coordinates (x1, y1) and (x2, y2) is defined as the maximum value  
of the difference between each coordinate.

max(abs(x1 – x2), abs(y1 – y2))

To implement the chebyshev function we will use the max function, declared in 
mathlib.pxd by importing it with the cimport statement, as shown in the following 
code snippet:

from mathlib cimport max

def chebyshev(int x1,int y1,int x2,int y2):
  return max(abs(x1 - x2), abs(y1 - y2))

The cimport statement will read hello.pxd and the max definition will be used to 
generate the distance.c file.
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Working with arrays
Numerical and high performance calculations often make use of arrays. Cython 
provides an easy way to interact with them, from the low-level approach of C arrays, 
to the more general typed memoryviews.

C arrays and pointers
C arrays are a collection of items of the same size stored contiguously in memory. 
Before digging into the details, it is helpful to understand (or review) how memory is 
managed in C.

Variables in C are like containers. When creating a variable, a space in memory 
is reserved to store its value. For example, if we create a variable containing a 
64 bit floating point number (double), the program will allocate 64 bit (16 bytes) 
of memory. This portion of memory can be accessed through an address to that 
memory location.

To obtain the address of a variable we can use the address operator, denoted with the & 
symbol. We can also use the printf function, as follows, available in the libc.stdio 
Cython module to print the address of this variable:

In [1]: %%cython
  ...: cdef double a
  ...: from libc.stdio cimport printf
  ...: printf("%p", &a)
  ...:
0x7fc8bb611210

Memory addresses can be stored in special variables—pointers—declared by putting 
a * prefix on the variable name as follows:

from libc.stdio cimport printf
cdef double a
cdef double *a_pointer
a_pointer = &a # They are of the same data type

If we have a pointer and we want to grab the value contained in the address it's 
pointing at, we can use the dereference operator, denoted with the * symbol, as shown 
in the following code. Be careful, the * used in this context has a different meaning 
from the * used in the variable declaration.

cdef double a
cdef double *a_pointer
a_pointer = &a
a = 3.0
print(*a_pointer) # prints 3.0
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When declaring a C array, the program allocates enough space to contain several 
elements of the specified size. For instance, to create an array that has 10 double 
values (8 bytes each), the program will reserve 8 * 10 = 80 bytes of contiguous space in 
memory. In Cython we can declare such an array using the following syntax:

cdef double arr[10]

We can also declare a multidimensional array, like an array with 5 rows and 2 
columns using the following syntax:

cdef double arr[5][2]

The memory will be allocated in a single block of memory, row after row. This 
order is commonly referred to as row-major and is represented in the following 
figure. Arrays can also be ordered column-mayor, as it happens in the FORTRAN 
programming language.
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Memory arrangement

Array ordering has important consequences. When iterating a C array 
over the last dimension, we access contiguous memory blocks (in our 
example 0, 1, 2, 3 …)while when we iterate on the first dimension, we 
skip a few positions (0, 2, 4, 6, 8, 1 … ). You should always try to access 
memory contiguously as this optimizes cache usage.

We can store and retrieve elements from the array by using standard indexing, C 
arrays don't support fancy indexing or slices:

arr[0] = 1.0
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C arrays can also be used as pointers. The arr variable, in fact, is a pointer to the first 
element of the array. We can verify that the address of the first element of the array is 
the same as the address contained in the variable arr:

In [1]: %%cython
  ...: from libc.stdio cimport printf
  ...: cdef double arr[10]
  ...: printf("%p\n", arr)
  ...: printf("%p\n", &arr[0])
  ...:
0x7ff6de204220
0x7ff6de204220

You should use C arrays and pointers when interfacing with existing C libraries or 
when you need a fine control over the memory. For more common use-cases you can 
employ NumPy arrays or typed memoryviews.

NumPy arrays
NumPy arrays can be used in Cython as normal Python objects, by using their 
already optimized broadcasted operations.

The problem comes when we want to efficiently iterate over the array. When we 
do an indexing operation on a NumPy array, a few other operations take place at 
the interpreter level causing a major overhead. Cython can optimize those indexing 
operations by acting directly on the underlying memory area used by NumPy arrays, 
allowing us to treat them just like C arrays.

NumPy array support comes in the form of a ndarray data type. We first have to 
cimport the numpy module. We assign it to the name c_np to differentiate it from the 
regular numpy Python module as follows:

cimport numpy as c_np

We can now declare a NumPy array by specifying the type of the array elements and 
the number of dimensions, with a special syntax called buffer syntax. To declare a 
two-dimensional array of type double we can use the following code:

cdef c_np.ndarray[double, ndim=2] arr

An array defined in this way will be indexed by acting directly on the underlying 
memory area; the operation will avoid the Python interpreter giving us a tremendous 
speed boost.
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In the next example, we will show the usage of the buffer syntax and compare it with 
the normal Python version.

We first write the numpy_bench_py function that increments each element of py_arr 
by 1000. We declared the index i as integer so that we avoid the for loop overhead:

In [1]:  %%cython
  ...:  import numpy as np
  ...:  def numpy_bench_py(): 
  ...:    py_arr = np.random.rand(1000)
  ...:    cdef int i
  ...:    for i in range(1000):
  ...:       py_arr[i] += 1

Then we write the same function using the buffer syntax. Notice that after we define 
the c_arr variable using c_np.ndarray, we can assign to it an array from the numpy 
Python module:

In [2]:  %%cython
  ...:  import numpy as np
  ...:  cimport numpy as c_np
  ...:  def numpy_bench_c():
  ...:    cdef c_np.ndarray[double, ndim=1] c_arr
  ...:    c_arr = np.random.rand(1000)
  ...:    cdef int i
  ...:
  ...:    for i in range(1000):
  ...:       c_arr[i] += 1

We can time the results using timeit, obtaining an impressive 50x speedup:

In [10]: %timeit numpy_bench_c()
100000 loops, best of 3: 11.5 us per loop
In [11]: %timeit numpy_bench_py()
1000 loops, best of 3: 603 us per loop

Typed memoryviews
C and NumPy arrays are both objects that act on a memory area. Cython provides a 
universal object—the typed memoryview—to access arrays and other data structures 
that expose the so called buffer interface, such as the built-ins bytes, bytearray, and 
array.array.
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A memoryview is an object that maintains a reference on a certain memory area. It 
doesn't actually own the memory, but it can read and change its content (it is a view). 
By using typed memoryviews we can interact with both C and NumPy arrays in the 
same way.

Memoryviews can be defined using a special syntax. We can define a memoryview 
of int and a 2D memoryview of double in the following way:

cdef int[:] a
cdef double[:, :] b

The same syntax applies to function definitions, class attributes, and so on. Any object 
that exposes a buffer interface will automatically be bound to the memoryview. We 
can bind the memoryview to an array by the following simple assignment:

import numpy as np

cdef int[:] arr
arr_np = np.zeros(10, dtype='int32')
arr = arr_np # We bind the array to the memoryview

The new memoryview will share the data with the NumPy array. Changes in the 
array elements will be shared between the two data structures:

arr[2] = 1 # Changing memoryview
print(arr_np)
# [0 0 1 0 0 0 0 0 0 0]

In a certain sense, the memoryview is a generalization of a NumPy array. As we 
have seen in Chapter 2, Fast Array Operations with Numpy, slicing a NumPy array  
does not copy the data but returns a view on the same memory area.

Memoryviews also support array slicing with the following standard NumPy syntax:

cdef int[:, :, :] a
arr[0, :, :] # Is a 2-dimensional memoryview
arr[0, 0, :] # Is a 1-dimensional memoryview
arr[0, 0, 0] # Is an int
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To copy data between a memoryview and another, you can use a syntax similar to 
the slice assignment, as shown in the following code:

import numpy as np

cdef double[:, :] b
cdef double[:] r
b = np.random.rand(10, 3)
r = np.zeros(3, dtype='float64')

b[0, :] = r # Copy the value of r in the first row of b

In the next section, we will use the typed memoryviews to handle the arrays in our 
particle simulator application.

Particle simulator in Cython
Now that we have a basic understanding on how Cython works we can rewrite the 
ParticleSimulator.evolve method. Thanks to Cython, we can convert our loops 
in C, thus removing the overhead introduced by the Python interpreter.

In Chapter 2, Fast Array Operations with Numpy, we wrote a fairly efficient version of 
the evolve method using NumPy. We can rename the old version as evolve_numpy 
to differentiate it from the new version:

  def evolve_numpy(self, dt):
    timestep = 0.00001
    nsteps = int(dt/timestep)
    
    r_i = np.array([[p.x, p.y] for p in self.particles])    
    ang_speed_i = np.array([p.ang_speed for p 
      in self.particles])
    v_i = np.empty_like(r_i)
    
    for i in range(nsteps):
      norm_i = np.sqrt((r_i ** 2).sum(axis=1))

      v_i = r_i[:, [1, 0]]
      v_i[:, 0] *= -1
      v_i /= norm_i[:, np.newaxis]        

      d_i = timestep * ang_speed_i[:, np.newaxis] * v_i

      r_i += d_i
    
    for i, p in enumerate(self.particles):
      p.x, p.y = r_i[i]
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We want to convert this code to Cython. Our strategy will be to take advantage 
of the fast indexing operations by removing the NumPy array broadcasting, thus 
reverting to an indexing-based algorithm. Since Cython generates efficient C code, 
we are free to use as many loops as we like without any performance penalty.

As a design choice, we can decide to encapsulate the loop in a function that we will 
rewrite in a Cython module called cevolve.pyx. The module will contain a single 
Python function c_evolve that will take the particle positions, the angular velocities, 
the timestep, and the number of steps as input.

At first, we are not adding typing information; we just want to isolate the function 
and make sure that we can compile our module without errors.

# file: simul.py
# ... other code
  def evolve_cython(self, dt):
    timestep = 0.00001
    nsteps = int(dt/timestep)
    
    r_i = np.array([[p.x, p.y] for p in self.particles])    
    ang_speed_i = np.array([p.ang_speed for 
      p in self.particles])

    c_evolve(r_i, ang_speed_i, timestep, nsteps)
    
    for i, p in enumerate(self.particles):
      p.x, p.y = r_i[i]

# file: cevolve.pyx
import numpy as np

def c_evolve(r_i, ang_speed_i, timestep, nsteps):
  v_i = np.empty_like(r_i)
    
  for i in range(nsteps):
    norm_i = np.sqrt((r_i ** 2).sum(axis=1))

    v_i = r_i[:, [1, 0]]
    v_i[:, 0] *= -1
    v_i /= norm_i[:, np.newaxis]        

    d_i = timestep * ang_speed_i[:, np.newaxis] * v_i

    r_i += d_i

Notice that we don't need a return value for c_evolve, as values are updated in the 
r_i array in-place. We can benchmark the untyped Cython version against the old 
NumPy version by slightly changing our benchmark function, as follows:
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def benchmark(npart=100, method='python'):
  particles = [Particle(uniform(-1.0, 1.0), 
    uniform(-1.0, 1.0), 
    uniform(-1.0, 1.0)) 
    for i in range(npart)]

  simulator = ParticleSimulator(particles)
  if method=='python':
    simulator.evolve_python(0.1)

  if method == 'cython':
    simulator.evolve_cython(0.1)

  elif method == 'numpy':
    simulator.evolve_numpy(0.1)

We can time the different versions in an IPython shell:

In [4]: %timeit benchmark(100, 'cython')
1 loops, best of 3: 401 ms per loop
In [5]: %timeit benchmark(100, 'numpy')
1 loops, best of 3: 413 ms per loop

The two versions have the same speed. Compiling the Cython module without static 
typing doesn't have any advantage over pure Python. The next step, is to declare the 
type of all the important variables so that Cython can perform its optimizations.

We can start by adding types to the function arguments. We will declare the arrays 
as typed memoryviews containing double values. It is worth mentioning that if we 
pass an array of int or float32 type, the casting won't happen automatically and 
we would get an error.

def c_evolve(double[:, :] r_i, double[:] ang_speed_i, 
  double timestep, int nsteps):

At that point, we want to rewrite the loops over the particles and time steps. We can 
declare the iteration variables i, j and the particle number nparticles as int:

  cdef int i, j
  cdef int nparticles = r_i.shape[0]

At this point the algorithm is very similar to the pure Python version; we iterate over 
the particles and time steps and we compute the velocity and displacement vectors 
for each particle coordinate, using the following code:

  for i in range(nsteps):
    for j in range(nparticles):
      x = r_i[j, 0]
      y = r_i[j, 1]
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      ang_speed = ang_speed_i[j]
      
      norm = sqrt(x ** 2 + y ** 2)

      vx = (-y)/norm
      vy = x/norm

      dx = timestep * ang_speed * vx
      dy = timestep * ang_speed * vy

      r_i[j, 0] += dx
      r_i[j, 1] += dy

In the previous code, we added the x, y, ang_speed, norm, vx, vy, dx, and dy 
variables. To avoid the Python interpreter overhead we have to declare them  
with their corresponding types at the beginning of the function as follows:

cdef double norm, x, y, vx, vy, dx, dy, ang_speed

We also used a function called sqrt to calculate the norm. If we use the sqrt present 
in the math module or the one in numpy, we would again include a slow Python 
function in our critical loop, thus killing our performance. A fast sqrt is available  
in the standard C library, already wrapped in the libc.math Cython module:

from libc.math cimport sqrt

After recompiling, we can re-run our benchmark to assess our improvements, as 
follows:

In [4]: %timeit benchmark(100, 'cython')
100 loops, best of 3: 13.4 ms per loop
In [5]: %timeit benchmark(100, 'numpy')
1 loops, best of 3: 429 ms per loop

For small particle numbers the speed-up is massive, we obtained a 40x performance 
improvement over the previous version. However, we should also try with a larger 
number of particles to test the performance scaling, as in the following code:

In [2]: %timeit benchmark(1000, 'cython')
10 loops, best of 3: 134 ms per loop
In [3]: %timeit benchmark(1000, 'numpy')
1 loops, best of 3: 877 ms per loop

As we increase the number of particles, the two versions get closer in speed. By 
increasing the particle size to 1000 we already decreased our speed-up to a more 
modest 6x. This is likely due to the fact that as we increase the number of particles 
the Python for-loop overhead gets less and less significant compared to the speed of 
the other operations.
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Profiling Cython
Cython gives us a wonderful tool to quickly find the slow spots due to the Python 
interpreter—a feature called annotated view. We can turn on this feature by compiling 
a Cython file with the -a option, using the following command line. Cython will 
generate a HTML file containing our code annotated with some useful information:

$ cython -a cevolve.pyx

$ google-chrome cevolve.html

The HTML file displayed in the following screenshot shows our Cython file  
line-by-line:
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Each line has a background color in different shades of yellow; an intense color 
means that the code has a lot of interpreter-related calls, while white lines gets 
translated to pure C. Since interpreter calls are typically slow, the objective is to make 
the function body as white as possible. By clicking on any of the lines we can see 
the C code generated by the Cython compiler. For example, the line v_y = x/norm 
checks that the norm is not 0, raising a ZeroDivisionError otherwise. The line x = 
r_i[j, 0] shows that Cython checks that the indexes are within the bounds of the 
array. You may notice that the last line is of a very intense color, by inspecting the 
code we can see that this is actually a glitch; the code refers to a boilerplate related to 
the end of the function.

Cython can shut down those checks to improve speed using its compiler directives. 
There are three different ways to add compiler directives:

•	 Using a decorator or a context manager
•	 Using a comment at the beginning of the file
•	 Using the Cython command line options

For a complete list of the Cython compiler directives you can refer 
to the official documentation at http://docs.cython.org/src/
reference/compilation.html#compiler-directives

For example, to disable the "bounds" checking of arrays, it is sufficient to decorate a 
function with cython.boundscheck in the following way:

cimport cython

@cython.boundscheck(False)
def myfunction:
  # Code here

We can use cython.boundscheck to wrap a block of code into a context manager,  
as follows:

with cython.boundscheck(False):
  # Code here

If we want to disable bounds checking for a whole module we can add the following 
line of code at the beginning of the file:

# cython: boundscheck=False

To alter the directives with the command line options you can use -X as follows:

$ cython -X boundscheck=True



Chapter 3

[ 69 ]

We can now try to avoid the extra checks in our function by disabling the 
boundscheck directive and enabling cdivision (this disables the checks for 
ZeroDivisionError) as in the following code:

cimport cython

@cython.boundscheck(False)
@cython.cdivision(True)
def c_evolve(double[:, :] r_i,double[:] ang_speed_i, 
  double timestep,int nsteps):

If we look at the annotated view again, the loop body is completely white; we 
removed all traces of the interpreter from the loop. In the following case however, 
we didn't obtain a performance improvement:

In [3]: %timeit benchmark(100, 'cython')
100 loops, best of 3: 13.4 ms per loop

We can profile Cython code with cProfile by including the profile=True directive 
in our files. To show its usage we can write a function that calculates the Chebyshev 
distance between two arrays of coordinates. Create a file cheb.py:

import numpy as np
from distance import chebyshev

def benchmark():
  a = np.random.rand(100, 2)
  b = np.random.rand(100, 2)
  for x1, y1 in a:
    for x2, y2 in b:
      chebyshev(x1, x2, y1, y2)

If we try profiling this script as-is, we won't get any statistics regarding the functions 
that we implemented in Cython. If we want to know the profile metrics for the max 
and min functions we have to add the profile=True option to the mathlib.pyx file, 
as shown in the following code:

# cython: profile=True

cdef int max(int a, int b):
  # Code here
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We can now profile our script with %prun using IPython, as follows:

In [2]: import cheb
In [3]: %prun cheb.benchmark()
     2000005 function calls in 2.066 seconds

  Ordered by: internal time

  ncalls tottime percall cumtime percall filename:lineno(function)
    1  1.664  1.664  2.066  2.066 cheb.py:4(benchmark)
 1000000  0.351  0.000  0.401  0.000 {distance.chebyshev}
 1000000  0.050  0.000  0.050  0.000 mathlib.pyx:2(max)
    2  0.000  0.000  0.000  0.000 {method 'rand' of  
      'mtrand.RandomState' objects}
    1  0.000  0.000  2.066  2.066 <string>:1(<module>)
    1  0.000  0.000  0.000  0.000 {method 'disable' of  
      '_lsprof.Profiler' objects}

From the output, we can see that the max function is present and is not a bottleneck. 
The problem seems to be lying in the benchmark function; the issue is likely to be the 
Python for-loop overhead. In this case, the best strategy would be rewriting the loop 
in NumPy or port the code to Cython.

Summary
Cython will bring the speed of your programs to another level. Cython programs 
are much easier to maintain in comparison to C, thanks to the tight integration with 
Python and the availability of profiling tools.

In this chapter, we introduced the basics of the Cython language and how to make 
our programs faster by adding static types. We also learned how to work with C 
arrays, NumPy arrays, and memoryviews.

We optimized our particle simulator by rewriting the critical evolve function, 
obtaining a tremendous speed gain. Finally, we learned how to use the annotated 
view to quickly spot interpreter related calls and how to enable cProfile for  
Cython scripts.

In the next chapter, we will learn the parallel processing basics and see how to write 
Python programs that take advantage of multiple processors so that you can write 
faster programs and solve larger problems.



Parallel Processing
With parallel processing you can increase the amount of calculations your program 
can do in a given time without needing a faster processor. The main idea is to 
divide a task into many sub-units and employ multiple processors to solve them 
independently.

CPUs containing several cores (2, 4, 6, 8, ...) have become a common trend in 
technology. Increasing the speed of a single processor is costly and problematic; 
while leveraging the parallel capabilities of cheaper multi-core processors is a 
feasible route to increase performance.

Parallel processing lets you tackle large scale problems. Scientists and engineers 
commonly run parallel code on supercomputers—huge networks of standard 
processors—to simulate massive systems. Parallel techniques can also take 
advantage of graphics chips (a hardware optimized for parallelization).

Python can be used in all of these domains, allowing us to apply parallel  
processing to all sorts of problems with simplicity and elegance, opening  
the door to infinite possibilities.

In this chapter, we will:

•	 Briefly introduce the fundamentals of parallel processing
•	 Illustrate how to parallelize simple problems with the multiprocessing 

Python library
•	 Learn how to write programs with the IPython parallel framework
•	 Further optimize our program using multithreading with Cython  

and OpenMP
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Introduction to parallel programming
In order to parallelize a program, we need to divide the problem into sub-units  
that can run independently (or almost independently) from each other.

A problem where the sub-units are totally independent from each other is called 
embarrassingly parallel. An element-wise operation on an array is a typical example—
the operation needs only to know the element it is handling at the moment. Another 
example, is our particle simulator—since there are no interactions, each particle can 
evolve in time independently from the others. Embarrassingly parallel problems are 
very easy to implement and they perform optimally on parallel architectures.

Other problems may be divided into sub-units but have to share some data to 
perform their calculations. In those cases, the implementation is less straightforward 
and can lead to performance issues because of the communication costs.

We will illustrate the concept with an example. Imagine you have a particle 
simulator, but this time the particles attract other particles within a certain  
distance (as shown in the following figure). To parallelize this problem we divide 
the simulation box in regions and assign each region to a different processor. If 
we evolve the system for one step, some particles will interact with particles in a 
neighboring region. To perform the next iteration, the new particle positions of the 
neighboring region are required:
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Communication between processes is costly and can seriously hinder the 
performance of parallel programs. There exists two main ways to handle data 
communication in parallel programs:

•	 Shared memory
•	 Distributed memory

In shared memory, the sub-units have access to the same memory space.  
The advantage of this approach, is that you don't have to explicitly handle the 
communication as it is sufficient to write or read from the shared memory. However, 
problems arise when multiple processes try to access and change the same memory 
location at the same time. Care should be taken to avoid such conflict using 
synchronization techniques.

In the distributed memory model each process is completely separated from  
the others and possesses its own memory space. In this case, communication  
is handled explicitly between the processes. The communication overhead is 
typically costlier compared to shared memory, as data can potentially travel  
through a network interface.

One common way to achieve parallelism with the shared memory model is  
threads. Threads are independent sub-tasks that originate from a process  
and share resources such as memory.

Python can spawn and handle threads, but they can't be used to increase 
performance due to the Python interpreter design—only one Python instruction 
is allowed to run at a time. This mechanism is called Global Interpreter Lock 
(GIL). What happens is that, each time a thread executes a Python statement, a 
lock is acquired which prevents other threads to run until it is released. The GIL 
avoids conflicts between threads, simplifying the implementation of the CPython 
interpreter. Despite this limitation, threads can still be used to provide concurrency 
in situations where the lock can be released, such as in time-consuming I/O 
operations or in C extensions.
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The GIL can be completely avoided by using processes instead of threads.  
Processes don't share the same memory area and are independent from each  
other—each process has its own interpreter. By using processes, we'll have very  
few disadvantages: inter-process communication is less efficient than shared 
memory, but it is more flexible and explicit.

The multiprocessing module
The standard multiprocessing module can be used to quickly parallelize simple 
tasks by spawning several processes. Its interface is easy-to-use and includes several 
utilities to handle task submission and synchronization.

The Process and Pool classes
You can create a process that runs independently  by subclassing multiprocessing.
Process. You can extend the __init__ method to initialize resources and you can 
write the portion of the code destined to the subprocess by implementing a Process.
run method. In the following code, we define a process that will wait for one second 
and print its assigned id:

import multiprocessing
import time

class Process(multiprocessing.Process):
    def __init__(self, id):
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        super(Process, self).__init__()
        self.id = id

    def run(self):
        time.sleep(1)
        print("I'm the process with id: {}".format(self.id))

To spawn the process, we have to initialize our Process object and call the Process.
start method. Notice that you don't directly call Process.run: the call to Process.
start will create a new process and, in turn, call the Process.run method. We can 
add the following lines at the end of the script to initialize and start the new process:

if __name__ == '__main__':
    p = Process(0)
    p.start()

The instructions after Process.start will be executed immediately without waiting 
for the process p to finish. To wait for the task completion you can use the method 
Process.join, as follows:

 if __name__ == '__main__':
    p = Process(0)
    p.start()
    p.join()

We can launch in the same way four different processes that will run in parallel. 
In a serial program, the total required time would be four seconds. Since we run it 
parallelly, each process will run at the same time, resulting in a 1-second wallclock 
time. In the following code, we create four processes and start them parallelly:

if __name__ == '__main__':
    processes = Process(1), Process(2), Process(3), Process(4)
    [p.start() for p in processes]

Notice that the order of the execution of parallel processes is unpredictable, it 
ultimately depends on how the operating system schedules the process execution. 
You can verify this behavior by running the program multiple times—the order will 
be different at each run.

The multiprocessing module exposes a convenient interface that makes it easy to 
assign and distribute tasks to a set of processes, the multiprocessing.Pool class.
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The multiprocessing.Pool class spawns a set of processes—called workers—and 
lets submit tasks through the methods apply/apply_async and map/map_async.

The Pool.map method applies a function to each element of a list and returns the list 
of results. Its usage is equivalent to the built-in (serial) map.

To use a parallel map, you should first initialize a multiprocessing.Pool 
object. It takes the number of workers as its first argument; if not provided, that 
number will be equal to the number of cores in the system. You can initialize a 
multiprocessing.Pool object in the following way:

pool = multiprocessing.Pool()
pool = multiprocessing.Pool(processes=4)

Let's see Pool.map in action. If you have a function that computes the square of a 
number, you can map the function to the list by calling Pool.map and passing the 
function and the list of inputs as arguments, as follows:

def square(x):
    return x * x

inputs = [0, 1, 2, 3, 4]
outputs = pool.map(square, inputs)

The Pool.map_async method is just like Pool.map but returns an AsyncResult 
object instead of the actual result. When we call the normal map, the execution of  
the main program is stopped until all the workers are finished processing the result. 
With map_async, the AsyncResult object is returned immediately without blocking 
the main program and the calculations are done in the background. We can then 
retrieve the result by using the AsyncResult.get method at any time, as shown  
in the following lines:

outputs_async = pool.map_async(square, inputs)
outputs = outputs_async.get()

Pool.apply_async assigns a task consisting of a single function to one of the 
workers. It takes the function and its arguments and returns an AsyncResult  
object. We can obtain an effect similar to map by using apply_async, as shown  
in the following code:

results_async = [pool.apply_async(square, i) for i in range(100))]
results = [r.get() for r in results_async]

As an example, we will implement a canonical, embarassingly parallel program:  
the Monte Carlo approximation of pi.
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Monte Carlo approximation of pi
Imagine we have a square with a side length of 2 units; its area will be 4 units. Now, 
we inscribe a circle with a radius 1 unit in this square, the area of the circle will be 
pi * r^2. By substituting the value of r in the previous equation we get that the 
numerical value for the area of the circle is pi * (1)^2 = pi. You can refer to the 
following figure for a graphical representation.

If we shoot a lot of random points on this figure, some points will fall into the 
circle—we'll call them hits—while the remaining points—misses—will be outside 
the circle. The idea of the Monte Carlo method is that the area of the circle will be 
proportional to the number of hits, while the area of the square will be proportional 
to the total number of shots. To get the value of pi, it is sufficient to divide the area 
of the circle (equal to pi) by the area of the square (equal to 4) and solve for pi:

hits/total = area_circle/area_square = pi/4
pi = 4 * hits/total

The strategy we will employ in our program will be:

•	 Generate a lot of sample (x, y) numbers in the range (-1, 1)
•	 Test if those numbers lie inside the circle by checking if x**2 + y**2 == 1
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We first write a serial version and check if it works. Then, we can write the parallel 
version. The implementation of the serial program is as follows:

import random

samples = 1000000
hits = 0

for i in range(samples):
    x = random.uniform(-1.0, 1.0)
    y = random.uniform(-1.0, 1.0)
    
    if x**2 + y**2 <= 1:
        hits += 1

pi = 4.0 * hits/samples

The accuracy of our approximation will improve as we increase the number  
of samples. You can notice that each loop iteration is independent from the  
other—this problem is embarassingly parallel.

To parallelize this code, we can write a function called sample that corresponds 
to a single hit-miss check. If the sample hits the circle, the function will return 
1; otherwise it will return 0. By running sample multiple times and summing 
the results, we'll get the total number of hits. We can run sample over multiple 
processors with apply_async and get the results in the following way:

def sample():
    x = random.uniform(-1.0, 1.0)
    y = random.uniform(-1.0, 1.0)
    
    if x**2 + y**2 <= 1:
        return 1
    else:
        return 0

pool = multiprocessing.Pool()
results_async = [pool.apply_async(sample) for i in range(samples)]
hits = sum(r.get() for r in results_async)
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We can wrap the two versions in the functions pi_serial and pi_apply_async 
(you can find their implementation in the pi.py file) and benchmark the execution 
speed as follows:

$ time python -c 'import pi; pi.pi_serial()'

real    0m0.734s

user    0m0.731s

sys    0m0.004s

$ time python -c 'import pi; pi.pi_apply_async()'

real    1m36.989s

user    1m55.984s

sys    0m50.386

As shown in the previous benchmark, our first parallel version literally cripples our 
code. The reason is that the time spent doing the actual calculation is small compared 
to the overhead required to send and distribute the tasks to the workers.

To solve the issue, we have to make the overhead negligible compared to the 
calculation time. For example, we can ask each worker to handle more than one 
sample at a time, thus reducing the task communication overhead. We can write 
a function sample_multiple that processes more than one hit and modifies our 
parallel version by splitting our problem in 10, more intensive tasks as shown in the 
following code:

def sample_multiple(samples_partial):
    return sum(sample() for i in range(samples_partial))

ntasks = 10
chunk_size = int(samples/ntasks)
pool = multiprocessing.Pool()
results_async = [pool.apply_async(sample_multiple, chunk_size)
                 for i in range(ntasks)]
hits = sum(r.get() for r in results_async)

We can wrap this in a function called pi_apply_async_chunked and run  
it as follows:

$ time python -c 'import pi; pi.pi_apply_async_chunked()'

real    0m0.325s

user    0m0.816s

sys    0m0.008s
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The results are much better; we more than doubled the speed of our program. You 
can also notice that the user metric is larger than real: the total CPU time is larger 
than the total time because more than one CPU worked at the same time. If you 
increase the number of samples, you will notice that the ratio of communication to 
calculation decreases, giving even better speedups.

Everything is nice and simple when dealing with embarassingly parallel problems. 
But sometimes, you have to share data between processes.

Synchronization and locks
Even if multiprocessing uses processes (with their own independent memory), 
it lets you define certain variables and arrays as shared memory. You can define a 
shared variable by using multiprocessing.Value passing its data type as a string 
(i integer, d double, f float, and so on). You can update the content of the variable 
through the value attribute, as shown in the following code snippet:

shared_variable = multiprocessing.Value('f')
shared_variable.value = 0

When using shared memory, you should be aware of concurrent accesses. Imagine 
you have a shared integer variable and each process increments its value multiple 
times. You would define a process class as follows:

class Process(multiprocessing.Process):

    def __init__(self, counter):
        super(Process, self).__init__()
        self.counter = counter

    def run(self):
        for i in range(1000):
            self.counter.value += 1

You can initialize the shared variable in the main program and pass it to 4 processes, 
as shown in the following code:

def main():
    counter = multiprocessing.Value('i', lock=True)
    counter.value = 0

    processes = [Process(counter) for i in range(4)]
    [p.start() for p in processes]
    [p.join() for p in processes] # processes are done
    print(counter.value)
main()
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If you run this program (shared.py in the code directory) you will notice that the 
final value of counter is not 4000, but it has random values (on my machine they are 
between 2000 and 2500). If we assume that the arithmetic is correct, we can conclude 
that there's a problem with the parallelization.

What happens is that multiple processes are trying to access the same shared 
variable at the same time. The situation is best explained by looking at the following 
figure. In a serial execution, the first process reads (the number 0), increments it, and 
writes the new value (1); the second process reads the new value (1), increments it, 
and writes it again (2). In the parallel execution, the two processes read the value (0), 
increment it, and write it (1) at the same time, leading to a wrong answer.

To solve this problem, we need to synchronize the access to this variable so that 
only one process at a time can access, increment, and write the value on the shared 
variable. This feature is provided by the multiprocessing.Lock class. A lock can 
be acquired and released through the acquire and release methods, or by using 
the lock as a context manager. When a process acquires a lock, other processes are 
prevented to acquire it until the lock is released.

We can define a global lock, and use it as a context manager to restrict the access to 
the counter, as shown in the following code snippet:

lock = multiprocessing.Lock()

class Process(multiprocessing.Process):
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    def __init__(self, counter):
        super(Process, self).__init__()
        self.counter = counter

    def run(self):
        for i in range(1000):
            with lock: # acquire the lock
                self.counter.value += 1
            # release the lock

Synchronization primitives such as locks are essential to solve many problems but 
you should avoid overusing them because they can decrease the performance of 
your program.

multiprocessing includes other communication and  
synchronization tools, you can refer to the official documentation  
for a complete reference:
http://docs.python.org/3/library/multiprocessing.html

IPython parallel
IPython's power is not limited to its advanced shell. Its parallel package includes a 
framework to setup and run calculations on single and multi-core machines, as well 
as on multiple nodes connected to a network. IPython is great because it gives an 
interactive twist to parallel computing and provides a common interface to different 
communication protocols.

To use IPython.parallel, you have to start a set of workers—Engines—that are 
managed by a Controller (an entity that mediates the communication between the 
client and the engines). The approach is totally different from multiprocessing; you 
start the worker processes separately, and they will wait indefinitely, listening for 
commands from the client.

To start the controller and a set of engines (by default, one engine per processing 
unit) you can use the ipcluster shell command, as follows:

$ ipcluster start

With ipcluster you can also set up multiple nodes to distribute your calculations 
over a network by writing a custom profile. You can refer to the official 
documentation for specific instructions at the following website:
http://ipython.org/ipython-doc/dev/parallel/parallel_process.html

After starting the controller and the engines, we can use an IPython shell to perform 
calculations in parallel. IPython provides two basic interfaces (or views): direct and 
task-based.



Chapter 4

[ 83 ]

Direct interface
The direct interface lets you issue commands explicitly to each of the computing 
units. The interface is intuitive, flexible, and easy-to-use, especially when used in  
an interactive session.

After starting the engines, you have to start an IPython session in a separate shell 
to interact with them. By creating a client, you can establish a connection to the 
controller. In the following code, we import the Client class and create an instance:

In [1]: from IPython.parallel import Client
In [2]: rc = Client()

The attribute Client.ids will give you a list of integers representing the available 
engines, as shown in the following code snippet:

In [3]: rc.ids
Out[4]: [0, 1, 2, 3]

We can issue commands to the engines by obtaining a DirectView instance. You 
can get a DirectView instance by either indexing the Client instance or by calling 
the DirectView.direct_view method. The following code shows different ways to 
obtain a DirectView instance from the previously created Client:

In [5]: dview = rc[0] # Select the first engine
In [6]: dview = rc[::2] # Select every other engine
In [7]: dview = rc[:] # Selects all the engines
In [8]: dview = rc.direct_view('all') # Alternative

You can treat the engines like fresh IPython sessions. At the finest level, you can 
execute commands remotely by using the DirectView.execute method:

In [9]: dview.execute('a = 1')

The command will be sent and executed individually by each engine. The return 
value will be an AsyncResult object and the actual return value can be retrieved 
using the get method.

As shown in the following code, you can retrieve the data contained in a remote 
variable by using the DirectView.pull method and send the data to a remote 
variable with the DirectView.push method. The DirectView class also supports  
a convenient dictionary-like interface:

In [10]: dview.pull('a').get() # equivalent: dview['a']
Out[10]: [1, 1, 1, 1]
In [11]: dview.push({'a': 2}) # equivalent: dview['a'] = 2
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It is possible to send and retrieve every object that can be serialized using the pickle 
module. On top of that, special handling is reserved for data structures such as 
NumPy arrays to increase the efficiency.

If you issue a statement that causes an exception, you will receive a summary of the 
exceptions in each engine:

In [12]: res = dview.execute('a = *__*') # Invalid
In [13]: res.get()
[0:execute]:
  File "<ipython-input-3-945a473d5cbb>", line 1
    a = *__*
        ^
SyntaxError: invalid syntax
 
[1:execute]:
  File "<ipython-input-3-945a473d5cbb>", line 1
    a = *__*
        ^
SyntaxError: invalid syntax
[2: execute]:
...

Engines should be treated as independent IPython sessions, and imports and 
custom-defined functions must be synchronized over the network. To import some 
libraries, both locally and in the engines, you can use the DirectView.sync_imports 
context manager:

with dview.sync_imports():
    import numpy

    # The syntax import _ as _ is not supported

To submit calculations to the engines, DirectView provides some utilities for 
common use cases such as map and apply. The DirectView.map method works 
similarly to Pool.map_async, as shown in the following code snippet. You map  
a function to a sequence, returning an AsyncResult object

In [14]: a = range(100)
In [15]: def square(x): return x * x
In [16]: result_async = dview.map(square, a)
In [17]: result = result_async.get()
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IPython provides a more convenient map implementation through the DirectView.
parallel decorator. If you apply the decorator on a function, the function will now 
have a map method that can be applied to a sequence. In the following code, we apply 
the parallel decorator to the square function and map it over a series of numbers:

In [18]: @dview.parallel()
    ...: def square(x):
    ...:     return x * x
In [19]: square.map(range(100))

To get the non-blocking version of map, you can either use the 
DirectView.map_sync method or pass the block=True 
option to the DirectView.parallel decorator.

The DirectView.apply method behaves in a different way than Pool.apply_async. 
The function gets executed on every engine. For example, if we have selected four 
engines and we apply the square function, the function gets executed once per 
engine and it returns four results, as shown in the following code snippet:

In [20]: def square(x):
            return x * x
In [21]: result_async = dview.apply(square, 2)
In [22]: result_async.get()
Out[22]: [4, 4, 4, 4]

The DirectiView.remote decorator lets you create a function that will run directly 
on each engine. Its usage is as follows:

In [23]: @dview.remote()
    ...: def square(x):
    ...:     return x * x
    ...:
In [24]: square(2)
Out[24]: [4, 4, 4, 4]

The DirectView also provides two other kinds of communication scheme: scatter 
and gather.

Scatter distributes a list of inputs to the engines. Imagine you have four inputs and 
four engines; you can distribute those inputs in a remote variable with DirectView.
scatter, as follows:

In [25]: dview.scatter('a', [0, 1, 2, 3])
In [26]: dview['a']
Out[26]: [[0], [1], [2], [3]]
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Scatter will try to distribute the inputs as equally as possible even when the number 
of inputs is not a multiple of the number of engines. The following code shows how 
a list of 11 computations gets processed in three batches of three items per batch and 
one batch of two items:

In [13]: dview.scatter('a', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
In [14]: dview['a']
Out[14]: [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

The gather function simply retrieves the scattered values and merges them back.  
In the following snippet, we merge back the scattered results:

In [17]: dview.gather('a').get()
Out[17]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We can use the scatter and gather functions to parallelize one of our simulations. 
In our system, each particle is independent from the other, therefore, we can use 
scatter and gather to divide the particles equally between the available engines, 
evolve them, and get the particles back from the engines.

At first, we have to set up the engines. The ParticleSimulator class should be 
made available to all the engines.

Remember that the engines have started in a separate process and the simul  
module should be importable by them. You can achieve this in two ways:

•	 By launching ipcluster in the directory, where simul.py is located
•	 By adding that directory to PYTHONPATH

If you're using the code examples, don't forget to compile the Cython extensions 
using setup.py.

In the following code, we create the particles and obtain a DirectView instance:

from random import uniform
from simul import Particle
from IPython.parallel import Client

particles = [Particle(uniform(-1.0, 1.0),
                      uniform(-1.0, 1.0),
                      uniform(-1.0, 1.0)) for i in range(10000)]
rc = Client()
dview = rc[:]
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Now, we can scatter the particles to a remote variable particle_chunk, perform the 
particle evolution using DirectView.execute and retrieve the particles. We do this 
using scatter, execute, and gather, as shown in the following code:

dview.scatter('particle_chunk', particles, block=True)

dview.execute('from simul import ParticleSimulator')
dview.execute('simulator = ParticleSimulator(particle_chunk)')
dview.execute('simulator.evolve_cython(0.1)')

particles = dview.gather('particle_chunk', block=True)

We can now wrap the parallel version and benchmark it against the serial one  
(refer to the file simul_parallel.py) in the following way:

In [1]: from simul import benchmark
In [2]: from simul_parallel import scatter_gather
In [5]: %timeit benchmark(10000, 'cython')
1 loops, best of 3: 1.34 s per loop
In [6]: %timeit scatter_gather(10000)
1 loops, best of 3: 720 ms per loop

The code is extremely simple and gives us a 2x speedup, scalable on any number  
of engines.

Task-based interface
IPython has an interface that can handle computing tasks in a smart way. While this 
implies a less flexible interface from the user point of view, it can improve performance 
by balancing the load on the engines and by re-submitting failed jobs. In this section, 
we will introduce the map and apply functions in the task-based interface.

The task interface is provided by the LoadBalancedView class, which can be 
obtained from a client using the load_balanced_view method, as follows:

In [1]: from IPython.parallel import Client
In [2]: rc = Client()
In [3]: tview = rc.load_balanced_view()

At this point we can run some tasks using map and apply. The LoadBalancedView 
class works similarly to multiprocessing.Pool, the tasks are submitted and 
handled by a scheduler; in the case of LoadBalancedView, the task assignment is 
based on how much load is present on an engine at a given time, ensuring that all the 
engines are working without downtimes.
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It's helpful to explain an important difference between apply in DirectView and 
LoadBalancedView. A call to DirectView.apply will run on every selected engine, 
while a call to LoadBalancedView.apply will schedule a single task to one of the 
engines. In the first case, the result will be a list, and in the latter, it will be a single 
value, as shown in the following code snippet:

In [4]: dview = rc[:]
In [5]: tview = rc.load_balanced_view()
In [6]: def square(x):
   ...:     return x * x
   ...:
In [7]: dview.apply(square, 2).get()
Out[7]: [4, 4, 4, 4]
In [8]: tview.apply(square, 2).get()
Out[8]: 4

LoadBalancedView is also able to handle failures and run tasks on engines when 
certain conditions are met. This feature is provided through a dependency system. 
We will not cover this aspect in this book, but interested readers can refer to the 
official documentation at the following link:

http://ipython.org/ipython-doc/rel-1.1.0/parallel/parallel_task.html

Parallel Cython with OpenMP
Cython provides a convenient interface to perform shared-memory parallel 
processing through OpenMP. This lets you write extremely efficient parallel code 
directly in Cython without having to create a C wrapper.

OpenMP is a specification to write multithreaded programs, and includes series of 
C preprocessor directives to manage threads; these include communication patterns, 
load balancing, and synchronization features. Several C/C++ and Fortran compilers 
(including GCC) implement the OpenMP API.

Let's introduce Cython parallel features with a small example. Cython provides 
a simple API based on OpenMP in the cython.parallel module. The simplest 
construct is prange: a construct that automatically distributes loop operations in 
multiple threads.

First of all, we can write a serial version of a program that computes the square  
of each element of a NumPy array in the hello_parallel.pyx file. We get a  
buffer as input and we create an output array by populating it with the squares of 
the input array elements. 
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The serial version, square_serial, is shown in the following code snippet:

import numpy as np

def square_serial(double[:] inp):
    cdef int i, size
    cdef double[:] out
    size = inp.shape[0]
    out_np = np.empty(size, 'double')
    out = out_np
    
    for i in range(size):
        out[i] = inp[i]*inp[i]
    
    return out_np  

Now, we can change the loop in a parallel version by substituting the range call 
with prange. There's a caveat, you need to make sure that the body of the loop is 
interpreter-free. As already explained, to make use of threads we need to release 
the GIL, since interpreter calls acquire and release the GIL, we should avoid them. 
Failure in doing so will result in compilation errors.

In Cython, you can release the GIL by using nogil, as follows:

with nogil:
    for i in prange(size):
        out[i] = inp[i]*inp[i]

Alternatively, you can use the convenient option nogil=True of prange that will 
automatically wrap the loop in a nogil block:

for i in prange(size, nogil=True):
    out[i] = inp[i]*inp[i]

Attempts to call Python code in a prange block results in an 
error. This includes assignment operations, function calls, objects 
initialization, and so on. To include such operations in a prange 
block (you may want to do so for debugging purposes) you have  
to re-enable the GIL using the with gil statement:

for i in prange(size, nogil=True):

    out[i] = inp[i]*inp[i]

    with gil:  

        x = 0 # Python assignment
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At this point, we need to recompile our extension. We need to change setup.py to 
enable OpenMP support. You have to specify the GCC option -fopenmp using the 
Extension class in distutils and pass it to the cythonize function. The following 
code shows the complete setup.py file:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

hello_parallel = Extension('hello_parallel',
                           ['hello_parallel.pyx'],
                           extra_compile_args=['-fopenmp'],
                           extra_link_args=['-fopenmp'])

setup(
   name='Hello',
   ext_modules = cythonize(['cevolve.pyx', hello_parallel]),
)

Now that we know how to use prange, we can quickly parallelize the Cython 
version of our ParticleSimulator.

In the following code, we can take a look at the c_evolve function contained  
in the Cython module cevolve.pyx that we wrote in Chapter 2, Fast Array  
Operations with NumPy:

def c_evolve(double[:, :] r_i,double[:] ang_speed_i,
             double timestep,int nsteps):

    # cdef declarations

    for i in range(nsteps):
        for j in range(nparticles):
            # loop body

The first thing we have to do is invert the order of the loops; we want the outermost 
loop to be the parallel one, where each iteration is independent from the other. Since 
the particles don't interact with each other, we can change the order of iteration 
safely, as shown in the following code snippet:

    for j in range(nparticles):
        for i in range(nsteps):

            # loop body
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At that point we can parallelize the loop using prange, we already removed the 
interpreter-related calls when we added static typing, so the nogil block can be 
applied safely, as follows:

for j in prange(nparticles, nogil=True)

We can now wrap the two different versions into separate functions and we can  
time them, as follows:

In [3]: %timeit benchmark(10000, 'openmp')
1 loops, best of 3: 599 ms per loop
In [4]: %timeit benchmark(10000, 'cython')
1 loops, best of 3: 1.35 s per loop

With OpenMP, we are able to obtain a significant speedup compared to the serial 
Cython version by changing a single line of code.

Summary
Parallel processing is an effective way to increase the speed of your programs or 
to handle large amounts of data. Embarassingly parallel problems are excellent 
candidates for parallelization and lead to a straightforward implementation and 
optimal scaling.

In this chapter, we illustrated the basics of parallel programming in Python. We 
learned how to use multiprocessing to easily parallelize programs with the tools 
already included in Python. Another more powerful tool for parallel processing 
is IPython parallel. This package allows you to interactively prototype parallel 
programs and manage a network of computing nodes effectively. Finally, we 
explored the easy-to-use multithreading capabilities of Cython and OpenMP.

During the course of this book, we learned the most effective techniques to  
design, benchmark, profile, and optimize Python applications. NumPy can be  
used to elegantly rewrite Python loops, and if it is not enough, you can use Cython 
to generate efficient C code. At the last stage, you can easily parallelize your program 
using the tools presented in this chapter.
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